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ABSTRACT

A model using the artificial neural networks and genetic algorithm technique is developed
for obtaining optimum dimensions of the foundation length and protections of small hydraulic
structures. The procedure involves optimizing an objective function comprising a weighted
summation of the state variables. The decision variables considered in the optimization are the
upstream and downstream cutoffs lengths and their angles of inclination, the foundation length,
and the length of the downstream soil protection. These were obtained for a given maximum
difference in head, depth of impervious layer and degree of anisotropy. The optimization carried
out is subjected to constraints that ensure a safe structure against the uplift pressure force and
sufficient protection length at the downstream side of the structure to overcome an excessive exit
gradient. The Geo-studio software was used to analyze 1200 different cases. For each case the
length of protection (L) and volume of structure (V) required to satisfy the safety factors
mentioned previously were estimated for the input values, namely, the upstream cutoff depth
(S1), the downstream cutoff depth (S,), the foundation width (B), the angle of inclination of the
upstream cutoff (61) and the angle of inclination of the downstream cutoff (6,), H (difference
head), k; (degree of anisotropy) and D (depth of impervious layer). An ANN model was
developed and verified using these cases input-output sets as its data base. A MatLAB code was
written to perform a genetic algorithm optimization modeling coupled with this ANN model
using a formulated optimization model. A sensitivity analysis was done for selecting the cross-
over probability, the mutation probability and level, the number of population, the position of the
crossover and the weights distribution for all the terms of the objective function. Results indicate
that the most factors that affects the optimum solution is the number of population required. The
minimum value that gives stable global optimum solution of this parameter is (30000) while
other variables have little effect on the optimum solution.

Key words: inclined cutoff, optimization, genetic algorithm, artificial neural networks, uplift
pressure, exit gradient, factor of safety.
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1. INTRODUCTION

Hydraulic structures foundation proper design has a vital role on the safety of such structures. The
most common failures of these structures are either due to uplift pressure forces, and/or due to the
failure of the soil at the downstream side due to piping effect, which consequently results into a
tilting failure of the whole structure. Provision usually provided to avoid such failures are the use
of upstream and downstream cutoffs, a protection of suitable length at the downstream side, and
adequate volume of the super structure in order to achieve the required factors of safeties against
these failures. The required factors of safeties against uplift pressure and piping failures are
usually assigned according to the recommendations of authorized codes and pioneers experts and
scientist of the design of these structures such as Koshla, 1954. Different attempts were found on
the literature that focuses on the role and effectiveness of using cutoffs and protections that assure
the safety against such failures. Recently many optimization models were developed to decide the
suitable dimensions of these cutoffs and protections.
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Many of researches were conducted assuming the soil beneath the structure as homogeneous and
isotropic media. The real case is different, since the soil is heterogeneous and anisotropic.
However some researches were conducted assuming the soil is non-homogeneous but isotropic.
The present study represents an attempt to obtain an optimization model to find the optimum
dimension of the foundation length, cutoffs, and the downstream protection, by considering the
soil as anisotropic and using inclined cutoffs. The use of inclined cutoffs with an isotropy is
expected to be more reasonable since for anisotropic media the flow lines are affected by the
degree of anisotropy, and a certain inclination may be the optimum solution that minimizes the
effect of this anisotropy. However the inclination angles of the cutoffs are included in addition to
their lengths, foundation width, and length of protection and volume of the super structure. This
model is a genetic algorithm coupled with artificial neural networks.

Historically batter piles (inclined piles) were used to resist lateral forces and inclined forces
especially in water front structures. The forces on these structures are axial loads due to self-
weight of the superstructure and lateral loads due to water and seepage water. However, due to
poor performance in recent time, plumb piles (vertical piles) are now the system of choice.
Nevertheless, there are situations where batter piles are desirable, for example, where the new
structure has to be compatible with an existing batter pile structure or has high service-level lateral
loading conditions such as ship mooring (Harn, 2004). In addition, certain difficulties might be
experienced in driving the sheet piles vertically downwards (Ram and Vaidhianathan, 1940).

Most of the earlier studies were concerned only with one embedded inclined sheet pile. However,
limited literature is available concerning the use of two inclined sheet piles. The calculated exit
gradient values, flow rates, and uplift pressure were proved to be affected by changing the slope of
the angle of the sheet pile and varying the soil properties. Limited literature is available for
seepage through pervious medium beneath hydraulic structures with inclined cut-offs as a control
device.

Ram and Vaidhianathan, 1940 determined the distribution of uplift pressure under weirs with a
single sheet pile inclined to the floor. Siva and Basu, 1976 developed an analytical solution,
making use of the Schwartz-Christoffel transformation for determining the seepage characteristics
for the problem of flow under a weir having two unequal sheet piles at the ends and embedded in
an anisotropic porous medium of finite thickness. Al-Suhaili et al., 1988 investigated a direct
mathematical approach to obtain the exit gradient variation downstream of all types of structures
for both infinite and finite porous media for design purpose. llyinsky and Kacimov, 1992
investigated an analytical estimation of groundwater flow around cutoff walls and into interceptor
trenches. Griffiths and Fenton, 1993 studied the effect of stochastic soil permeability on confined
seepage occurring beneath water retaining structures. Random field concepts were used to generate
permeability fields having predefined mean, standard deviation and correlation structure.
Prabhata et al., 1997 studied the effectiveness of multiple sheet piles in weir design. Based on
cost optimization (expressed by Swamee et al., 1996), the researchers present a theoretical
justification of the viewpoint given by Sowers and Sally, 1960. Rajashree and Sitharam, 2001
studied the static and cyclic lateral responses of vertical and batter piles based on a newly
developed nonlinear finite element code using hyperbolic and modified hyperbolic relations to
represent the nonlinear behavior of soil. Hassan, 2002 investigated the optimum design of the
control devices for safe seepage under hydraulic structures. Al-Joubori, 2002 established a model
of seepage below hydraulic structure with two vertical cutoffs by using the Finite Element
technique combined with random field concepts for the generation of soil permeability properties
with specified mean, variance and spatial correlation length. Tayfur et al., 2005 investigated a
Finite Element Method and Artificial Neural Network Models for Flow through Jeziorsko earthfill
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dam in Poland. Ersayin, 2006 used the artificial neural networks to study seepage through the
body of an earth fill dam using MATLAB 6.0 Neural Network Toolbox. Alsenousi and
Mohamed, 2008 developed a two dimensional finite element model to analyze seepage flow
beneath a dam with an inclined sheet pile. Chen Y et al., 2008 performed a numerical solution for
seepage problems with complex drainage systems. A numerical solution based on the Finite
Element Method combining the substructure technique with a variation inequality formulation of
Signorini’s type was proposed to solve these problems. Karim, 2011 developed a Genetic
Algorithm model coupled with Artificial Neural Network model to find the optimal values of
upstream, downstream cutoff lengths, length of foundation and length of downstream protection
required for a hydraulic structure. Al-Suhaili, 2009 obtained the exit gradient variation along the
downstream side for an inclined sheet pile using analytical solution. Miao, et al., 2011 Predicted
seepage of earth dams using neural network and genetic algorithm for levenberg-marquardt (GA-
LM). Singh, 2011 investigated optimal hydraulic structures profiles under uncertain seepage head.
He had formulated an optimization problem using Genetic Algorithm model to obtain the optimum
structural dimensions that minimize the cost as well as satisfy the exit gradient criteria. Arun and
Lakshmi, 2011 obtained Closed-form theoretical solutions for steady seepage below a horizontal
impervious apron with equal end cutoffs using Schwarz-Christoffel transformation.

Arslan and Mohammad, 2011 conducted an experimental and theoretical study for piezometric
head distribution under hydraulic structures to test the effect of upstream, intermediate and
downstream sheet piles inclination, and then the optimum case of the uplift pressure reduction was
found. The solution was developed using the Schwarz-Christoffel transformation. ljam, 2011 used
an analytical solution to obtained seepage flow below a dam structure with inclined cutoff located
anywhere along the base of the dam. Al-Saadi, et al., 2011 investigated the effect of cut-off
inclination angle on exit gradient and uplift pressure head under hydraulic structure. The optimum
location and angle of inclination of cut-off have been also determined. This problem is solved
using the finite element method by using (ANSYS 11.0). Arun and Lakshmi, 2012 obtained the
closed-form solution to the problem of finite depth seepage under an impervious flat apron with
equal end cutoffs, with a downstream step, using the conformal transformations.

From the above studies, it appears that no solution was available in the literature to develop an
optimization model which will eliminate the difficulty faced by the designers of small structures,
in deciding the proper dimension length and angle of inclination of the cutoffs. An investigation of
the proper design of the structure with floor having two inclined cutoffs was, therefore, made.

In this research, a model was developed to optimize the dimensions of the structure foundation
having two inclined cutoffs. It is evident from the present study that these optimum dimensions
can minimize the formulated relative cost objective function. The GEO-SLOP, SEEP/W 2007
(version 7.10 build 4143) model was used to establish a data base which is used later to develop an
artificial neural network (ANN) model that relates the relevant input output variables of the
problem. Finally this ANN model was coupled with a genetic algorithm model, to optimize the
dimensions mentioned above. The ANN model provides the direct estimation of the required
outputs which are required for the genetic algorithm model.

2. FORMULATION OF THE OPTIMIZATION MODEL

The most critical design of a hydraulic structure is the foundation design. The required dimensions
for the design of the foundation are the length of floor (B), depth of upstream cutoff (S;), depth of
downstream cutoff (S,), angle of inclination of these cutoffs (61, 6), length of protection at the
downstream side against exit gradient (L), and the volume of superstructure (V) for a given head
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difference (H), depth of impervious layer (D), and given soil properties underneath the structure,
horizontal permeability ky, and vertical permeability ky. Fig. 1 shows these dimensions for a typical
hydraulic structure.

The values of (S1, Sy, L, and V) are affected by the maximum expected difference in head between
the upstream and downstream sides of the hydraulic structure (H) and the soil strata properties (K
and ky). The most critical failures that may occur for such structures are either due to the uplift
pressure or due to erosion of the downstream side, when the hydraulic gradient exceeds the critical
exit gradient. The designer can control these failures by providing the recommended factors of
safety against both uplift pressure and exit gradient failures. The controlling process was done by
selecting the dimensions of Sy, Sy, B,61, ©; and L for a given (H), (D) and (k«/ky). It is better to
select optimum dimensions; the following objective function of such a problem could be
introduced.

The cost objective function involves the cost of both floor and any control device and can be used
to achieve the optimum dimensions of the hydraulic structure. Such a function is formulated as
follows:

F (B, S1, S, L, 61, 6) =Cg*B+ Cg1*S1+ Csp*Sy+ CL*L+ Cy*V (1)

F: cost function that should be minimized.

Csi1, Csi1, Cg, Ci, Cy: relative weight (cost) of each dimension; the weight should satisfy the
following requirement: 0<C<1 and ), C=1

B, Si, Sy, 61, 62: dimensions and inclination angles of the hypothetical case study (defined in
fig.1).

L and V: length of protection downstream side of the structure and volume of super structure
respectively.

This function is subjected to the following Constraints:

o YV
FOS Up“ﬂ_uplift force 2 2 (2)
>3 3)

l

Where:

F.O.S uplift: factor of safety against uplift pressure

y.: Concrete weight density (24.5 KN/m?®)

V: Volume of concrete of the super structure

i Critical exit gradient (equal to one)

i: The computed exit gradient at the downstream side of the structure.

Additional constraints were also adopted to allow for much control of the decision variables as
follows:

S1min§ Slg S1m

S2min§ SZS S2m.51x

BminS B< Bmax (4)
glming ng leax

92min§ QZS 92max
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The Genetic Algorithm was used to solve the optimization problem mentioned above. The
optimization involves computation of state variables such as B, Si, Sy, 61, 62, L and V. The
computation of L and V was done by using the developed ANN model that will be shown
thereafter.

3. THE GEO-STUDIO MODEL

Any optimization method needs an explicit relationship between the input-output variables and its
variables partial derivatives. This relationship is either representing the objective function as the
output or representing output variables that used to estimate the objective function. Part of these
input and output variables may be a decision variables, and the other are of non decision variables
(given). The genetic algorithm method requires only the estimation of the objective function and do
not requires the derivatives. For the problem under consideration there exists no direct relationship
between the input variables (H,D, Ky and ky,S1,S;, 61, 67, and B) and their respective output
variables (L and V),that could be used to estimate the objective function, given by Eq.(1). Hence, as
the genetic algorithm model start the solution by generating randomly a large number of feasible
solution set for S;,S;, 64, 62, and B), for a given H,D, Ky, and Ky. For each generated set of these
variables, the values of L and V should be estimated that satisfy Egs. (2) and (3). These L and V
requires the solution of the seepage flow equation using finite differences or finite elements method
to obtain the head distribution in the flow field beneath the structure, hence obtaining the uplift
force and the exit gradient, which allows the estimation of L and V. The methodology adopted here
is to develop a direct relationship between the input and an output variable of the problem under
consideration, and also to develop a representative data base of these variables using the Geo-studio
software, which adopt the finite element solution of the seepage problem. This software provides
high level of accuracy and extensive graphical representations of the results. Then this data base
was used to obtain a simple direct relationship between the input and output variables, that can be
used easily in the genetic algorithm optimization model.

The data base mentioned above was performed by modeling 1200 different cases using the Geo-
studio software. Each case has different selected values of S1, S,, H, B, D, k;, 61 and ©,. The values
of exit gradient, seepage flow beneath the structure, and the uplift pressure under the structure were
calculated. These results can be used to estimate the volume of concrete (V) and the length of the
downstream protection (L) such that the constraints of Egs. (2) and (3) were achieved respectively.

The selected ranges of each variable S1, Sy, H, B, D, K;, 61 and 6, are as follows:

S1,S; (0.5-4)m steps 0.5, H (6-16)m steps 2, B (6-16)m steps 2, D (10-12)m steps 2, K (1-8)
and 61, 6, (50°-130°)

Fig. 2 shows the structure for one of the cases with the discretization process. This figure shows
also the uplift pressure distribution beneath the structure, flow lines and equipotential lines. Fig. 3
shows the distribution of the exit gradient along the downstream side of the structure. The required

length of protection can be estimated using this curve and Eq.(3).Table 1 shows the results of some
cases analyzed using the Geo-studio models.

4. DEVELOPMENT OF THE ARTIFICIAL NEURAL NETWORK (ANN) MODEL

The results of L and V for the (1200) cases were used for building an ANN model capable of
estimating L and V as output variables using Si, S,, H, B, D, ki, 61 and 6, as input variables.
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In order to obtain this model, the SPSS software (Statistical Procedure for Social Science, version
20.0) was used. The ANN model comprised eight neurons in the input layer where these neurons
represent the input variables namely Sy, Sy, H, B, D, k;, 61 and ©,. Two neurons were selected for
the output layer which represents the output variables (L and V). The network was built with one
hidden layer having nine neurons. The initial learning rate and the initial momentum term were
chosen equal to (0.4) and (0.9) respectively. The selected activation functions are the hyperbolic
tangent for the hidden layer and the identity for the output layer.

To build the ANN model, many run trials were performed, in each one the software parameters
were changed as follows:

e Selection of the percentages of division of the data into training, testing, and validation
subsets.

The selection of the division method either blocked, stripped, or random.

Testing the proper number of nodes in the hidden layer.

Changing the learning rate and momentum factor.

The selection of the best ANN model was achieved according to the smallest error and the
highest correlation coefficient of the predicted and observed outputs.

Table 2 represents the best data division and Fig. 4 shows the architecture of the ANN network.
Table 3 shows the bias and weight matrices for the input and hidden layers. Fig. 5 and Fig. 6 show
the comparison between the predicted and observed values of L and V, respectively. The results of
the ANN model indicated high correlation coefficients between the observed and predicted values
of L and V as r.= 97.5% and r,= 99.4% respectively. Even though the ANN modeling procedure
involves the subdivision of the data into subsets as mentioned above, and uses the first two subsets
for model parameter estimation, and the third set for validation, further verification was performed
herein.

A MatLAB (R2008a) code was written to perform the Algorithm shown in the steps (mentioned in
appendix A), used to estimate (L and V) for different values of (S;, Sy, H, B, D, K, 61 and 6,).

Table 4 shows the comparison of the values of L and V estimated using both Geo-studio and ANN
models, for 12 cases that are not involved in the data base of 1200 case mentioned above. These
results indicate the capability of the ANN model to produce acceptable results.

5. OPTIMIZATION USING GENETIC ALGORITHM (GA) MODEL

A MatLAB code was written for the solution of the optimization model formulated above, using
genetic Algorithm method as the steps shown in the appendix B. The following values were adopted
for the constraints shown in eq.(4), Simin=0.5M, Simax = 4M, Somin = 0.5M, Somax = 4M, Bmin = H,
Bmax = 3H. In any application of the genetic algorithm there exists different parameter that affects
the optimum solution. The proper value of each of these parameters should be obtained for the
specific application. For the application under study the following analysis was performed to obtain
the suitable value of each of these parameters.

The first parameter that should be obtained is the initial number of solutions that are generated
randomly, usually called initial population np. Generating low number of random solution may
result in an unstable solution, i.e., each run gives different optimum solution. In order to arrive to a
stable optimum solution there always exist a minimum np values that produces almost the same
optimum solution. Fig. 7 shows the obtained optimum objective function of three runs for different
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values of np, and given crossover position k=4, and 100% crossover Pc=1. Results indicate that the
required np value for stable solution is 30000.

The second parameter is the number of iterations required to obtain stable solution. That number of
iteration involves the number of the crossover operation performed. It was found the required
number of iterations which gives stable solution is 3. The application for cases of different
crossover position indicates the same values of np and number of iteration required for stable
solution; hence these values are fixed for the further analysis.

The third parameter that may have effect on the obtained optimum solution is the cross over
position k. A sensitivity analysis was done for selecting this position which can be defined as
corresponding points at which the two mating pairs are each cut once, and an arbitrary substrings
exchange with probability pc. Length and position of these substrings are chosen at random, but are
identical for both pairs. The crossover may involve more than one cut point. These tests were done
by taking different positions as k=1, k=2, k=4 and k=7. Fig. 7 presents the result of optimum
solution with the crossover position value equal to (k=4). Others crossing site are presented in
Fig. 8, Fig.9 and Fig.10. On analyzing the results shown in the above figures for different values of
crossover position, it is noticed that there is no high difference in the obtained the optimum solution.
However for 2-point crossover (Fig.8) the least value of f(x) was obtained.

Sensitivity analysis was also done for the parameter pc (the probability of crossover) in order to find
the effect of this parameter on the results obtained by the model. For this test, the number of
population size was fixed at 30000. Table 5 illustrates that (pc) had little effect on the solution.

The above four parameters are concerned with the genetic algorithm method. The following
analysis includes the effect of the different weight values assigned to the objective function
variables on the optimum solution of the problem under study. The relative weights for the above
analysis were chosen as Cs;=0.2, Cs,=0.2, Cg=0.1, C =0.1, Cy=0.4. In order to find the effect of the
relative weight on the results obtained by GA model, the sensitivity analysis on this parameter was
also done. Three different weights distribution as (Cs;=0.2, Cs,=0.2, Cg=0.2, C.=0.2, C\=0.2),
(Cs1=0.1, Cs,=0.1, Cp=0.3, C,=0.1, Cy=0.4) and (Cs;=0.1, Cs,=0.1, Cg=0.1, C,=0.1, Cy=0.6) were
examined. The results of this analysis are presented in Fig.11, Fig.12 and Fig.13 respectively. The
results of using an equal weight distribution for all the dimensions of the objective function (S;, Sy,
B, L and V) show that the value of f(x) decreases to almost half of its initial value as indicated in
Fig.11. While for the second weight distribution the value of f(x) remained unchanged. This result
may be expected since the weight Cy, reduces to a half of its initial value for the case of equal
weights. The volume of the structure (V) is the most significant variable that affects the objective
function. Therefore reducing the weight of (Cy) to half will affects the value of the objective
function to reach half of its initial value.

The most important improvement that can be made on the obtained optimum solution is mutation
which involves the modification of the value of each gene of a solution with some probability pm.
Therefore some optimal solutions were chosen to apply this improvement. During the runs, the
probability of mutation (pm) of 0.1 was used (10%). For this test, the first best three runs were
chosen from Table 7. The MatLAB code was written for doing the mutation process. From the
results summarized in table 8, it can be seen that no big changes in the values of the objective
function were observed for all of the three runs. This shows that the mutation has a little effect on
the optimum result.
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6. CONCLUSIONS

From the present work, the following conclusions could be obtained:

1)

2)

3)

4)

5)

6)

7)

The artificial neural network model, found to be efficient in obtaining the values of the length of
protection in the downstream side (L) and the volume required for superstructure (V) with a
correlation coefficients 97.5% and 99.4% respectively. The required number of hidden nodes was
9 with one hidden layer. Among different types of the activation functions of the hidden and
output layer tried, the hyperbolic tangent and the identity functions were found to be the most
suitable for the hidden and output layer respectively. The best learning rate and momentum term
found for the network are 0.4 and 0.9 respectively.

In the genetic algorithm model application for the problem understudy, indicated that as the size
of population of the solutions initially generated randomly increased, the differences in the
obtained optimal solution for different runs of the same input values are decreased. These
differences are insignificant when the size of population 30000, i.e. the same optimum objective
function and decision variables for all the runs, which is the required size of population for stable
solution.

The stable solution obtained for the size of population of 30000, requires 3 iterations of the
crossing over processes. Further iteration does not improve the optimum solution, i.e. the global
optimum was reduced using this number of iteration.

The genetic algorithm model indicates that the values of probability of crossing-over, probability
of mutation and mutation level have little effect on the obtained optimal solutions for the
problem studied.

Selecting different positions of the crossover using an integer position (k=1, 2, 4 and 7) reveals
that there are no large differences in the optimum solution. However, for k=2, the least value of
{f(x)} was obtained.

The obtained optimum solution using the genetic algorithm model is robust, i.e. each run give
different solution, and however, a slight difference was obtained for the decision variables for
most of the solutions. Hence, the designer should select the solution that gives the minimum
objective function {f(x)}.

The relative weight distribution of the objective function variables was found to have high
affection the optimum solution. Using an equal weight distribution for all dimensions of the
objective function (Sy, S;, B, L and V), the value of {f(x)} decreases to almost half of its initial
value. Hence, the designer should carefully choose a proper weight for each dimension
mentioned above.
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Appendix A: The Steps of MatLAB Code for the ANN Model

N e © ¢ ¢ ¢ 0 0 |

Structure data input:

Enter the maximum expected difference in head between upstream and downstream sides (H in meters),

Enter the value of impervious layer depth (D in meter)

Enter kr = k,/k, ratio of horizontal to vertical permeability.

Enter the floor length (B maximum in meters),

Enter the length of upstream cutoff (S; in meter) < depth of impervious layer (D),

Enter the length of upstream cutoff length (S,in meter),
Enter the values of 6, and ©..

Enter the model parameters matrices from Ann model (table

3):

[20.084 0.054 0.632 0.58 0.555 0.037 -0.045 0.062 |

S

|
|
0.041 0.218 0.1  0.124-0.023 0.064 -0.155 -0.22 |

0.039 0.349 -0.572-0.112 0.427 -0.128 0.011 -0.193 |
0.022 -0.102 0.731 -0.137 -0.212 -0.046 -0.022 0.124 |
-0.052-0.091 0.238 1.022 0.183 0.0620.007 0.246
-0.086 0.032 0.569-0.165 0.655 -1.467 -0.037 -0.128 |
0.056 -0.261-0.009 -0.187 0275 1.187 0.252 0.186 |

-0.032 0.195 -0.442 -0.106 -0.434 0.366 -0.095 0.26 |
-0.345 0.325 -0.037 0.155 0.421 0.382 0.208-0.104 |

-




Nu

Vo bias (9 x 1)=

W bias @x1)~

mber 9

[—1.5067

—0.552

—1.345

0.596
0.17

—1.826
—0.233

0.358

- 0.277 -

0.39
1.096

[0.212
0.008
—1.801

0.492

Wexa= | —0.478

3. Rescaling the eight input variables by using the standardization method:

Where:
_Sl_
S2
H
B
X(s x1)= D

Kr
o1

2.208
—0.432 —0.142

—-0.269 —0.141
- 0.197

(92

0.315 -

1.354]
0.747
0.055
0.795
0.373
0.047

4. Find the matrix Zin g

5. Find
6. Find
7. Find
8. Find

Volume 23 September 2017

Xs=(X-mean,)/sdy

Zin 0xy=Vo biaso)+V 8x9) * XS(axa)
Zin gqy=tansh (Zin(ex1))
Yeaty= Wo biastaxty+ W ox2) * Z(ox)
Yen=Yinea

L=y,*sd, +Mean_

V=y,*sdy+Meany
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Appendix B: Genetic algorithm Solution steps of the Optimization model

A MatLAB (R2008a) code was written to perform the Genetic Algorithm model by using the following steps:

1.

NG~ WN

10.

11.

Structure data input:
> Enter the maximum expected difference in head between upstream and downstream sides (H in meters),
> Enter value of impervious layer depth (D in meter)
> Enter k; = Kk / Kk, ratio of horizontal to vertical permeability.
> Enter the relative weights of the objective function

e Cs; : percent cost of upstream cutoff (S;)
e Cs;: percent cost of downstream cutoff (S,)
e Cg: percent cost of the foundation (B)
e C_ : percent cost of the length of protection (L)
e Cy : percent cost of the volume of the structure (V)
>  Enter the number of decision variables (nd)
» Enter the model parameters from ANN
e n: number of input variables.
e P number of hidden nodes.
e m: number of output variables.
e Enter the weight matrices Vpias, V, Wopias and W
> Enter the number of iterations (nit)
» Enter the number of population (np)
> Enter the cross-over probability (pc)
Generate random solution of np for each of the decision variable (Sy, S,, B, 6; and 6,).
Change the generated solutions to the ranges of each variable (eq.4)
Transform of the input variables to the standardized form
Calculate (L) and (V) by using the ANN model.
Calculate the value of the objective function using eq. (1):
Sort values of F(x) in ascending order
Select an individual strings according to their objective function values (fitness function) and copied them into the
mating pool. The number of pairs to be cross-over (NOCC) will be:

Nocc=|@ (12)

Make cross-over where each pair of strings undergoes crossing over by selecting the position of the cross-over
along the string uniformly. The resulting cross-over yields two new strings (offspring) as a result, the new
population (npao)will be :

npao = np+8*NOCC (13)

Find the value of F(X) for the new population (hpoa) after finding L and V for them, sort in ascending order, and
eliminate the last cases of new population (npao/2). The new population is then used in the next iteration of the
algorithm.

Go to step (8) to make another iteration.
S
B re—F—»
|
A
e-
S
D
Y
X XX K POV

Figure 1. The variables involved in the problem.
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Figure 3. Distribution of the exit gradient along the downstream Side.

(The zero distance in the distribution figure refer to the right point of the dam base)
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Table 1. Results obtained for L and V using the Geo-studio Models (k=4.889*10-4, k./ky=2,
H=6m, B=12m, D=10m).

S w»w
3¢
39

wlwlw| v |lw|w|lw|lw|[dNN N R R R e
XY R Y =Y N ) I O3 NG YOUY N O ('R I N [F2CN N [V N IYOUY I O ISR NG (ORI O [N

Table 2. Data division percent.

Item % Total output
Training 692 | 57.70%
Sample | Testing 311 | 25.90%

Validation | 197 16.40%
Total 1200 | 100.00%
Excluded 0
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Synaptic Weight = 0
— Synaptic Weight =0

™

W ARDDD0Y

WARDDDTO

WARDDODS

WARDDODE

Hidden layer activation function: Hyperbaolic tangent

Cutput layer activation function: ldentity

Figure 4. Architecture of the artificial neural network model.
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Table 3. Bias and weight matrices
Parameter Estimates

Predicted
Hidden Layer 1 Output Layer

HL4) | Hws) | Hwe) VARQD | VAROQ

009 0010
(Bias) 0.596 0.17 | -1.826
VAR00001 0.022 | -0.052 | -0.086
VAR00002 -0.102 | -0.091 0.032
VAR00003 0.731 0.238 0.569
VAR00004 -0.137 1.022 -0.165
VAR00005 -0.212 0.183 0.655
VAR00006 -0.046 0.062 -1.467
VAR00007 -0.022 0.007 | -0.037
VAR00008 0.124 0.246 | -0.128
(Bias)
H(1:1)
H(1:2)
H(1:3)
H(1:4)
H(1:5)
H(1:6)
H(1:7)
H(1:8)
H(1:9)

Predictor

6001

500+

400

Ea 300

Predicted Value
Predicted Value

3
S
1

100+

T T T T T T T T T T T T T T
o 1 2 3 4 B B 0 100 200 300 400 500 600

Figure 5. Comparison between predicted Figure 6. Comparison between predicted
and observed values of (L). and observed values of (V).
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Table 4. Comparison of ( L and V) values using geo-studio and ANN model.

Geo-studio
Model

L \Y \Y

1.7 | 223.82
1.7 | 238.28
1.5 | 249.18
1.2 | 261.94
2.3 194.84
2.1]212.43
1.9 | 227.01
1.7 | 213.17
0.8 | 135.02
0.7 | 145.49
0.6 | 153.66
0.4 161.12
120.67
143.23
160.68
176.39

ANN Model

A

=
Difference
for L Value

%
Difference

BB INPNNNRFRPRPRPRPRIRPWWWW

Table 5. Experimental result concerning the sensitivity analysis of the probability of crossover (pc)
(k=2, Cs1=0.1, Cs,=0.1, Cp=0.2, C. =0.2 and Cy=0.4).

%Difference
for Runl &
Run2

%Difference
for Runl &
Run3

%Difference
for Run2 &
Run3

-1.6489

-0.7481

0.8862

120 -
100 -

Objective function

o

N B D [o)
o o o o
1 1 1 1

-0.1674

M Run 1

-0.9889

ERun2 [HRun3

- A Yeea Ouwn )
No. of Population

-0.8202

Figure 7. Variation of the objective function with respect of number of population initial randomly
generated (k=4, Cs;=0.2, Cs,=0.2, Cg=0.1, C,=0.1, Cy=0.4 and pc=1).
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140 -
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3
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Figure 8. Variation of the objective function with respect of changing the integer position (k=2,

C31:0.2, C32:0.2, Cg=0.1,C.=0.1,Cy=04 and pC:].).
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=

o

o
1

o BRunl [@ARun2 HERun3

P [o2] ©

o =] =]
L
]

Objective function

N
o
1

o

o Yoo Yoo Ovve Yavnn Youun Youun
No. of Population

Figure 9. Variation of the objective function with respect of changing the integer position (k=7,
C51:0.2, C52:0.2, Cg=0.1,C,=0.1,Cy=04 and pC:].).

100 +
01 [] ORunl ERun2 ERun3

" "No. of Population
Figure 10. Variation of the objective function with respect of changing the integer position (k=1,
Cs1=0.2, Cs,=0.2, Cg=0.1, C;=0.1, Cy=0.4 and pc=1).
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Figure 11. Variation of the objective function with respect of changing the relative weights of the
objective function (k=2, Cs;=0.2, Cs,=0.2, Cg=0.2, C,=0.2, C\,=0.2 and pc=1).
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Figure 12. Variation of the objective function with respect of changing the relative weights of the
objective function (k=2, Cs;=0.1, Cs>=0.1, Cg=0.1, C,=0.3, Cy=0.4 and pc=1).

160 -

140 -
S 120 -
100 -
80 -
60 -
40 -
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MRunl @Run2 @ERun3

Objective funct

No. of Population

Figure 13. Variation of the objective function with respect of changing the relative weights of the
objective function (k=2, Cs1=0.1, Cs,=0.1, Cg=0.1, C =0.1, Cy=0.6 and pc=1).

20



Number 9 Volume 23 September 2017 Journal of Engineering

Table 6. Optimum solution obtained using GA model H=10m, Kr=1, D=10m, pc=1, k=2, Cs;=0.2,
CSZ:O.Z, CBZO.Z, CL:0.2, CVZO.Z.

Table 7. Effect of mutation on the value of the optimum solution.

modified modified modified
variable variable variable
9, | 1185 0, 130 e, | 110
0, 61.1 ' 0, 50.2 ' 0, 51.2
3.8 3.7 4
0.53 ' 0.63 ' 0.4
11.3 10 9.9
4 ' 4 ' 3.8
9.9 10.1 105
0.63 0.63 ' 0.53
4 3.8 4
1235 ' 130 ' 118.5
0.63 0.73 0.5
55.2 ' 53.2 60.2

modified modified modified
variable variable variable
0, 125.3 0, 129.3 6, | 125.3
0, 68.1 ' 0, 73.1 ) 0, 73.1
3.8 4 3.9
0.61 0.71 ) 0.81
10.5 9.6 9.6
4 ' 3.8 4
10.5 9.6 9.6
0.61 ' 0.71 ) 0.81
3.8 4 3.9
125.3 ' 129.3 ) 125.3
0.61 0.71 0.81
73.1 ' 68.1 ) 73.1
ified modified dified
able variable variable
114.6 0, 119.6 6, | 114.6
46.3 ' 0, 69.3 ' 0, 69.3
3.8 4 3.8
0.57 ' 0.67 0.67
10.6 10.1 10.6
4 ' 3.8 ' 3.8
10.6 10.1 10.6
0.57 ' 0.67 ' 0.67
3.8 4 3.8
114.6 ) 119.6 ' 114.6
0.57 0.67 0.67
46.3 ' 69.3 ) 69.3

Run 1
(S1=3.9,
S$,=0.53,
B=10.3,

©,=128.5,
0,=51.2,
F(x)=35.59)
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Table 8. Comparison of estimated (L and V) values between Geo-studio model and GA model

Estimated Values

Given Values —
Genetic Algorithm Model Geo-studio
Model

(L) value
(V) value

s, | B o, | L L | Vv

6,

% Difference for
% Difference for

(m) | (m) (m) (m) | (m?)

056 | 6 80 1.3 ] 365

051 ] 81 1.1 | 789
0.61 ] 10 3.3 | 144
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