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ABSTRACT 

This paper aims to evaluate the reliability analysis for steel beam which represented by the 

probability of Failure and reliability index. Monte Carlo Simulation Method (MCSM) and First 

Order Reliability Method (FORM) will be used to achieve this issue. These methods need two 

samples for each behavior that want to study; the first sample for resistance (carrying capacity R), 

and second for load effect (Q) which are parameters for a limit state function. Monte Carlo method 

has been adopted to generate these samples dependent on the randomness and uncertainties in 

variables. The variables that consider are beam cross-section dimensions, material property, beam 

length, yield stress, and applied loads. Matlab software has been adopted to generate these pseudo-

random variables dependent on its statistical characteristics such as coefficient of variance and 

probability density function that gathered from a review of literatures.  

Keywords: Reliability analysis, Monte Carlo Method, Matlab. 
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 الخلاصة
لتقييم تحليل الموثوقية لعتبة حديدية والمتمثلة بحساب احتمالية الفشل و معامل  هو هذه الورقة البحثية أن الهدف من دراسة

الموثوقية. تتم هذه المسالة باستخدام طريقتين الاولى تحليل الموثوقية بالدرجة الاولى و الثانية استخدام محاكاة مونتي كارلو 
تصرف العتبة المطلوب دراسته العينة الاولى لقابلية تحمل او لتحليل الموثوقية. عند استخدام هذه الطريقتين نحتاج لعينتين من 

تم توضيف طريقة مونتي كارلو  الممانعة و العينة الثانية تصرفها نتيجة الحمل المسلط وهما يمثلان متغيرات لمعادلة دالة الحد.
تي اخذت بنظر الاعتبار هي ابعاد المقطع لتوليد هذه العينات بالاعتماد على العشوائية وعدم اليقين في المتغيرات. المتغيرات ال
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, و الاحمال المسلطة. يتم استخدام برنامج ماتلاب لانشاء المتغيرات مادة, طول العتبة, اجهاد الخضوعالعرضي للعتبة, خاصية ال
من الادبيات نوع توزيع الدالة التي تم جمعها العشوائية الكاذبة بالأعتماد على خصائصها الاحصائية من معامل التغايير و 

 السابقة.
 تحليل الموثوقية, طريقة مونتي كارلو, برنامج ماتلاب. الكلمات الرئيسية:

 
1. INTRODUCTION 

 
The design of engineering structures is usually associated with a significant level of uncertainties 
due to limited information in the process of estimating the structural parameters. The impact of 
uncertainties needs to be quantified and propagated to obtain the reliability of a structural system 
(Morio & Balesdent, 2016). In practice, most engineering design of structures are based on 
deterministic parameters and often do not consider the variations in the material properties and the 
geometry of the structure. (Ebenuwa & Tee, 2019) stated that the determination of structural 
performance based on the deterministic model is undoubtedly a simplification because physical 
measurement always shows variability and randomness. 
In many circumstances, it is impossible to describe the response of structural systems 
mathematically because of these uncertainties. Even after finding a mathematical model to predict 
the behavior of the system, there is no closed form solution for solving the equation. In such cases, 
simulation is one of the most applicable techniques to acquire the required information. Simulation 
is a special technique to approximate the quantities that are difficult to obtain analytically. Amongst 
many of simulation methods, the Monte Carlo simulation method is one of the well-known and 
common procedures in solving complex engineering problems (Melchers & Beck, 2017). 

Theory and methods for structural reliability have been developed substantially in the last few 
years and they are actually a useful tool for evaluating rationally the safety of complex structures 
or structures with unusual designs (Gordini, et al., 2018). Recent evolution allows anticipating 
that their application will gradually increase, even in the case of common structures (Cardoso, et 
al., 2008). 

The behavior of steel beam is generally assessed based on their strength and their elastic 
deformations In addition to the deterministic aspects that discussed in mechanics of material, the 
strength and deformation of steel beams have random parts due to the scatter in the dimensions, 
material properties, and the applied load. These random aspects can be simulated in terms of the 
probability density functions that either obtained from real experimental data on the member scale 
level or from the simulation that based on data of sectional level (Ghali, et al., 2009). 

This paper starts with data gathering from literature for the variation in cross-section dimensions 
of frame elements, the variation in the elastic modulus and yield stress of the material, and the 
scatter in the applied loads. Based on these data, it has been found that the variation in the sectional 
dimensions, elastic modulus, yield stress, and dead loads are normally distributed while the 
lognormal and extreme type I (Gumbel) can be adopted for the variation in the length and live 
loads respectively. 

Monte Carlo simulation has been used to generate a sample for the parameters that effected on the 
beam behavior. Two samples have been generated first one is the demand sample while the second 
one is the capacity samples. These samples had been presented and summarized in the form of 
histograms. The generated sample has been statistically tested with the 𝜒2 test. Base on limit state 
function, these samples have been used to estimate the probability of failure for a steel beam. This 
study innovatively concerns with the randomness in structural parameters and how these 
randomness effects on structure reliability by determining the probability of failure and reliability 
index. 
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2. UNCERTAINTY IN ENGINEERING SYSTEM 

Every structure may contain some failed elements which lead to the whole system failure. The 

probability of failure for the system can be predicated established on the failure of its elements. 

Hence, it is significant in reliability analysis to determine the probability of system elements 

failure. First and second-order of reliability method and Monte Carlo methods can be used to 

analyze the reliability of elements (Mohammad Masoud & Medi Moudi, 2012). For the statically 

determinate simply supported beam of this paper, the element failure is equivalent to the system 

failure. 

The uncertainties included in the building engineering can be categorized according to their source 

into natural hazards and man-made hazards. Natural hazards may be resulted by wind, seismic, 

temperature differentials, snow load, or ice accretion. The natural variations of structural 

properties such as strength, stiffness and loads can be classified within the natural hazards. On the 

other hand from the structural point of view, the man-made hazards can be subclassified into two 

classes: from within the building process and from outside the building process. The second one 

includes uncertainties due to fires, gas explosions, collisions, and similar causes, while the first 

one includes uncertainties due to acceptable practice and those caused by departures from 

acceptable practice (Nowak & Collins, 2000). This paper concerns with the natural hazard aspects 

due to change in stiffness, strength, and the applied loads of simply supported beam. 
 

3. PROPOSED STRUCTURAL SECTIONS 

In steel beam floor system, the members that are oriented parallel to the span of the slab system 

are usually referred to as beams, and the members that support the beams and are oriented 

perpendicular to the span of the slab system are usually called girders (Al-Zaidee & Al-Hasany, 

2018). 

This paper considers the reliability analysis of the interior girder for the floor system shown in Fig. 

1. The floor system consists of a concrete slab with a corrugated metal deck that supported by 

four-floor beams that in turn are supported by three girders. The proposed sections for different 

members indicated in Fig. 1 below has been preliminarily selected based on traditional design 

requirements (AISC 360, 2010). Uniformly distributed pressures of 2kPa and 2.87 kPa have been 

adopted for the superimposed and live loads respectively. According to the traditional one-way 

analysis, these loads are transformed into line loads supported by the floor beams. The reactions 

from the floor beams are applied as point loads on the supporting girders. For the interior girder, 

this analysis process leads to concentered forces of 118.76 kN and 59.4 kN for dead and live load 

reactions respectively. In subsequent simulation analysis, the live load reaction has been used as 

the mean value while the dead load reaction has been slightly modified to be considered as a mean 

value. 

  
a- Three-dimensional view. b- Section view for the interior girder. 

Figure 1. Floor system 3D views. 
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4. LIMIT STATE FUNCTIONS (PERFORMANCE FUNCTIONS) 

In this paper, the serviceability limit state deflection function and ultimate moment limit state 

function have been studied for the beam. Traditionally, when a beam is progressively loaded, the 

deflection linearly increased at an elastic stage (Jabir, et al., 2017) and the ultimate limit states 

can be used to determine the safety margin. Consider the moment carrying the strength of the beam 

to indicate the capacity, R, and the applied moment at the most critical mid-span section to indicate 

the demand, Q, the performance function can be written as follows: 

 

𝑔(𝑅. 𝑄) = 𝑅 − 𝑄 (1) 

 

The beam is classified safe when 𝑔 ≥  0 while it is unsafe when 𝑔 <  0. Mathematically, the 

failure probability 𝑃𝑓 is equal to the probability of 𝑔 <  0: 

 

𝑃𝑓 = 𝑃(𝑔 < 0) = 𝑃(𝑅 − 𝑄 < 0) (2) 

 

 
Figure 2. PDFs of load, resistance, and safety margin (Ayyub & McCuen, 2011). 

If R and Q have probability density functions (PDF) indicated in Fig. 2, the quantity R-Q would 

be a random variable also with its own PDF. As shown in Fig. 2, the probability of failure would 

correspond to the shaded area. 

In general, the performance function, 𝑔, may be a function of many variables including loads, 

influence factors, strength parameters, material properties, dimensions, analysis factors, and so on.  

A direct determinate of 𝑃𝑓 from Eq. (2) is relatively difficult. Therefore, it would be more 

appropriate to express structural safety in the expression of a reliability index, 𝛽, which can be 

described as the shortest distance from the origin to the failure limit. When R and Q are 

uncorrelated the reliability index, 𝛽, would be the inverse of the coefficient of variation of the Eq. 

(1) (Nowak & Collins, 2000): 

 

𝛽 = −𝜑−1 (𝑃𝑓 )  𝑜𝑟 𝑃𝑓 = 𝜑(−𝛽) (3) 

 

Theory and methods for structural reliability that have been originally developed as a useful 

facility for determining rationally the safety of complicated and unusual structures or structures 

with unusual designs (Cardoso, et al., 2008). 
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From a statistical point of view, the PDF of 𝑔(𝑅, 𝑄) and 𝛽 can be determined either analytical or 

based on a simulation process. Monte Carlo technique has been used for a simulation to determine 

the reliability index 𝛽 numerically see Section 6. The analytical determination of 𝛽 has been 

presented in Section 7. 

In this study, the reliability analysis for beam has been studied with two scenarios, first by 

considering only the applied load as constant by using their mean values and other parameters as 

variables due to randomness, the second scenario by considering loads as variables and other 

parameters as constant using their mean values.  

 

5. RANDOM VARIABLES WITH THEIR STATISTICAL PARAMETERS 

5.1 Geometric Characteristics of Hot-Rolled Profiles 

In their work (Zdenek Kala, et al., 2009) gathered 369 valid observations for the variables 

ℎ, 𝑏1, 𝑏2, 𝑡1, 𝑡21, 𝑡22, indicated in Fig. 3 from a manufacturer and analyzed the data statistically to 

evaluate the suitability of the normal distribution as a governing distribution for these dimensions. 

As indicated in Table 1, they presented the relative (non-dimensional) geometrical characteristic 

as ratios of the real measured to the corresponding nominal dimension. 

 

  
a- Geometric characteristics 𝒉, 𝒃, 𝒕𝟏, 𝒕𝟐𝟏, 𝒕𝟐𝟐. b- Geometric characteristics 𝒃𝟏, 𝒃𝟐. 

Figure 3: Tolerances on geometrical shape and dimensions. 

As indicated in Table 1. (Zdenek Kala, et al., 2009) have noted that for a symmetrical cross-

section the statistical characteristics of quantities 𝑡21 and 𝑡22 are approximately identical and that 

there is a small difference between statistical characteristics of the quantities 𝑏1 and 𝑏2. Therefore, 

they adopted a single random variable of 𝑡2 for each of 𝑡21 and 𝑡22 and a random variable of 𝑏 for 

 𝑏1 and  𝑏2 in the reliability analysis.  

Table 1. Statistical analysis of geometric characteristics. 

Thickness Mean value Standard deviation 

Section depth h 1.0009 0.0044233 

Section width 𝑏1 1.0124 0.010103 

Section width 𝑏2 1.0154 0.0093995 

Section width 𝑏 1.0139 0.009868 

Web thick. 𝑡1 1.0540 0.039053 

Flange thick. 𝑡21 0.9878 0.043528 

Flange thick. 𝑡22 0.9977 0.047625 

Flange thick. 𝑡2 0.9927 0.045859 
 

Depending on the nominal dimensions of wide flange steel sections and the non-dimensional 

variations indicated Table 1 above, randomness for the moment of inertia have been simulated in 
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this paper using a Matlab code and suitable random number generators. The four-moment 

statistical characteristics of the mean, the variance, the coefficient of skewness, and the coefficient 

of kurtosis have been determined and a normal distribution probability density function, pdf, with 

parameters indicated in Table 2 has been assumed for the generated data for the moment of inertia. 

Adequacy of the proposed pdf has been checked using the 𝜒2 goodness of fit test. 

 

Table 2. Statistical characteristic for the moment of inertia. 

Property Mean/nominal Cov Distribution type 

𝐼 1.0 0.035 Normal  

 

5.2 Applied Loads 

In addition to its own weight, 𝑊𝐷, the interior girder is subjected to two concentrated loads 𝐹𝐷, 

and 𝐹𝐿 transformed from the supported floor beams. According. (S.G.Buonopane & 

B.W.Schafer, 2006), the dead load has a normally distributed pdf while the live load follows an 

extreme type I (Gumbel) distribution with statistical characteristics illustrated in Table 3. 

 

5.3 Yield Stress and Residual Stresses 

Due to the effects of the residual stresses, the yield stresses will vary through the section of hot 

rolled steel beams. According to (J. Kala & Z. Kala, 2005), this variation can be described based 

on parameters and statistical distributions indicated in Table 4. Based on these data, a Matlab 

random number generator has been used in this paper to generate a sample of yield stresses values 

that have been used in subsequent calculations of the nominal flexural strength, 𝑀𝑛, of the interior 

girder. 

Table 3. Statistical characteristic for loads. 
Random 

variables 

Nominal 

load 
Mean COV 

Standard 

deviation 

Distribution 

type 
References 

𝑊𝐷 𝑘𝑁/𝑚 2.827 1.03 𝑊𝐷 =2.912 0.08 0.233 Normal 
(M.Sigit Darmawan, et 

al., 2013) 

𝐹𝐷 𝑘𝑁 118.76 
1.03𝐹𝐷 

=122.323 
0.08 9.786 Normal 

(M.Sigit Darmawan, et 

al., 2013) 

𝐹𝐿 𝑘𝑁 59.4 59.4 0.1 5.94 Gumbel 
(S.G.Buonopane & 

B.W.Schafer, 2006) 

 

Table 4. Statistical characteristics of the yield stress of steel (J. Kala & Z. Kala, 2005) 

No Quantity 
Name of a random 

quantity 

Type of 

distribution 
Dimensions 

Mean 

value 

Standard 

deviation 

1 𝐹𝑦 Flange yield strength Normal (Gauss) MPa 297.30 16.80 

2 𝐹𝑦 Web yield strength Normal (Gauss) MPa 307.30 16.80 

 

5.4 Modulus of Elasticity and Length of the Element 

Based on (S.Zhang & W.Zhou, 2012), and (Mohammad Masoud & Medi Moudi, 2012) 

parameters and statistical distributions indicated in Table 5 has been used in this paper to simulate 

a sample data for the elastic modulus and beam length. Matlab random generators with the 
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corresponding distributions have been used to generate sample data for subsequent deflection and 

strength analysis.  

Table 5.Statistical features of random variables. 

Random variables Mean/ Nominal COV Distribution type 

Modulus of Elasticity 𝐸 𝑀𝑃𝑎 0.993 0.034 Normal 

Length 𝑚 1 0.07 Lognormal 

 

6. MONTE CARLO METHOD TO GENERATE SAMPLES 

In this paper, all simulation processes for strength, serviceability, and reliability analyses have 

been achieved through the Monte Carlo method that has used digital computers to generate pseudo-

random sampling for variables of dimensions, loads, elastic modulus, yield stress, and the girder 

span. Each variable has been generated based on preselected statistical parameters and distribution 

as discussed in Section 5. This section presents the application of the method for the simulation of 

strength and serviceability. The reliability aspects have been discussed in Section 7. 

The method is based on running the model many times as in random sampling. For each sample, 

random variates are generated on each input variable; computations are run through the model 

yielding random outcomes on each output variable. Since each input is random, the outcomes are 

random (Geng & Dean, 2017). The method may be described as a means of solving problems 

numerically in mathematics, physics, and other sciences through sampling experiments (Morio & 

Balesdent, 2016). 

In each simulation experiment, the possible values of the input random variables 𝑥 =
 (𝑥1  . 𝑥2. … . 𝑥𝑛) are generated based on predefined distribution and parameters. Then the values 

of the response variable, y, are determined through the performance function 𝑦 =  𝑔(𝑥) at the 

samples of input random variables. In this manner, a set of samples for the response variable y 

would be available for the subsequent statistical analyses to estimate the characteristics of the 

response variable 𝑦 (Thomopoulos, 2013).  

The problem to be simulated may have a probabilistic or deterministic form. In the probabilistic 

form, the actual random variable or function appearing in the problem is simulated, whereas in the 

deterministic form an artificial random variable or function is first constructed and then simulated 

(Elishakoff, 2017). The interior girder of this paper can be classified as a deterministic form 

problem where the stiffness, strength, and stability response functions have been determined from 

the strength of the material and the design of steel structures.  

For subsequent reliability analysis, the Monte Carlo method is used to generate samples for the 

resistance and the demand of the interior girder. 

 

6.1 Analysis of Demand 

As it is a statically determinate structure, the traditional equations Eq. (4) and Eq. (5), are used to 

calculate the deflection and moment at the mid-span of the girder as indicators on the demand 

aspects of serviceability limit state. 
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∆𝑡=
5𝑊𝐿4

384𝐸𝐼
+ ∑

𝐹𝑎2𝑏2

3𝐸𝐼𝐿

2

𝑖=1

 (4) 

 

𝑀 =
𝑊𝑙2

8
+ 𝐹(𝐿+𝐷) 𝑎 (5) 

 

Matlab codes have been used to generate pseudo-random numbers based on the following 

functions (Ang & Tang, 2007): 

• normrnd: to generate normal random variables for the moment of inertia, the modulus of 

elasticity, the yield stress, and the dead load. 

• lognrnd: to generate lognormal random variables for the beam span. 

• evrnd: to generate extreme type I random variables for the live load. 

As mention earlier, there are two scenarios to generate the demand sample. The first scenario 

considers the uncertainties in dimension, length, and modulus of elasticity as indicated in Matlab 

codes illustrated in Table A-1 for deflection and Table A-2 in Appendix A for the moment. The 

second scenario considered the uncertainties in loads and their position using Matlab codes 

presented in Table A-3 and Table A-4 for deflection and moment respectively. A samples size, 

𝑁, of 10000 has been adopted in all Matlab codes. 

The statistical properties for the obtained samples from the simulation process have been presented 

and discussed below: 

• For the first scenario, the coefficient of variance, 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 𝑚𝑒𝑎𝑛⁄ , for deflection 

and moment was equal to 0.071 and 0.007 respectively and each of them has a lognormal 

probability density function as illustrated in Fig.4 and Fig.5. These results indicate that the 

deflection is more sensitive than the moment for the randomness in dimensions and material 

properties.  

 

 
 

a- Histogram for deflection of the girder. b- Moment characteristics. 

Figure 4. Histogram and the statistical characteristics for the mid-span deflection due to 

randomness in dimensions, length, and material property. 
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a- Histogram for the moment of the girder. b- Moment characteristics 

 

Figure 5. Histogram and the statistical characteristics for the mid-span moment due to 

randomness in dimensions, length, and material property. 

• For the second scenario, the coefficients of variance were equal to 0.145 and 0.09 for the 

deflection and the moment respectively with lognormal distributions type as shown in Fig. 6 

and Fig. 7. The deflection and the moment seem more sensitive to the randomness in load than 

the randomness in the dimensions and material properties of the first scenario. In the two 

scenarios, the deflection is more sensitive to the randomness of the input variables. 

 

  
a- Histogram for deflection of the girder. b- Moment characteristics. 

 

Figure 6. Histogram and moment characteristics for deflection data due to randomness in self-

weight, applied load, and their position. 
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a- Histogram for deflection of the girder. b- Moment characteristics. 

 

Figure 7. Histogram and moment characteristics for moment data due to randomness in self-

weight, applied load, and their position. 

6.2 Analysis of Resistance 

The sample data for the deflection capacity and moment resistance have been simulated using 

Matlab functions similar to those mentioned in Section 6.1. For deflection, the capacity is 

represented by the maximum allowable deflection, while for the moment, the capacity is 

represented by elastic moment based on the assumption that the girder has no sufficient lateral 

support. The statistical characteristics for the resistance samples are presented and discussed 

below: 

 

• For maximum allowable deflection: 

The random sample for the limit state deflection has been generated based on different random 

values for the girder span, ℓ, and the traditional ratio of ℓ 240⁄   for the permissible deflection 

due to dead and live. A mean to ℓ̅/240 has been adopted in this simulation process.  

Random sample for the girder span has been generated, plotted in a histogram form, and 

statistically analyzed using the Matlab code indicated in Table A-5. The histogram and the 

statistical characteristics values presented in Fig.8 show that the generated sample has a 

lognormal distribution with a coefficient of variance equal to 0.069. 

• For Moment capacity: 

The nominal moment capacity, 𝑀𝑛, can be estimated based on the elastic capacity, elasto-plastic 

capacity, or the full plastic capacity depends on the lateral support conditions and the 

compactness of the section. In this paper, the elastic moment indicated in Eq.(6) has been 

adopted based on insufficient lateral support. 

 

𝑀𝑛 = 𝑀𝑦 = 𝐹𝑦 × 𝑆𝑥 (6) 

 

A Matlab code indicated in Table A-6 has been prepared to generate a random sample for 𝑀𝑛 

based on the randomness of the yield stress, 𝐹𝑦, and the elastic section modulus, 𝑆𝑥. Histogram 

and the statistical characteristics for the obtained data have been presented in Fig.9. The generated 

random sample has a coefficient of variance of 0.053 with lognormal probability density function. 
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a- Histogram for Max. Allowable deflection. b- Moment characteristics. 

 

Figure 8. Histogram and moment characteristics for maximum allowable deflection for the case 

of live and dead load. 

 

  
a- Histogram for resistance elastic moment. b- Moment characteristics. 

 

Figure 9. Histogram and moment characteristics for the resistance of elastic behavior sample. 

 

7. RELIABILITY ANALYSIS FOR BEAM 

In this paper, the reliability analysis for the interior girder has been achieved using the Monte Carlo 

simulation method and the first order reliability method, FORM. These two methods have been 

discussed briefly in subsections below while their results and conclusions have been presented in 

Section 8. 
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7.1 Using Monte Carlo Simulation Method 

In addition, to use Monte Carlo to generate random samples for demand and capacity, it provides 

a powerful approach for an approximation but an adequate simulation of the failure probability for 

N randomly generated samples based on the following relation (Nowak & Collins, 2000): 

 

𝑃𝑓 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑟𝑖𝑎𝑙𝑠 𝑓𝑜𝑟 𝑔(𝑥) ≤ 0

𝑁
 (7) 

 

Accuracy of the estimated the probability increases as the total number of simulations, N, increases 

(Far & Wang, 2016). 

 

7.2 First Order Second Moment Reliability Index 

The first order reliability method, FORM, is another method to do reliability analysis for structure 

dependent on the statistical properties of resistance and demand samples for the limit state that 

want to study. It calculates the reliability index 𝛽 then from Eq. (3) the 𝑃𝑓 can be determined.  

There are two cases to determine 𝛽 dependent on limit state function if it is linear or nonlinear. 

For linear LSF when 𝑔 expressed by: 

 

𝑔(𝑋1, 𝑋2, … . , 𝑋𝑛 ) = 𝑎0 + 𝑎1 𝑋1 + 𝑎2 𝑋2 + ⋯ + 𝑎𝑛 𝑋𝑛 = 𝑎0 + ∑(𝑎𝑖 𝑋𝑖 )

𝑛

𝑖=1

 (8) 

where the 𝑎𝑖 terms (𝑖 =  0,1,2, . . . , 𝑛) are constants and the 𝑋𝑖 terms are uncorrelated random 

variables. When R and Q are independent normally distributed random variables, (AISC 360, 

2010), the reliability index computed as below: 

 

𝛽 =
𝑅 ̅ −  �̅�

√𝜎𝑅
2 + 𝜎𝑄

2 

 
(9) 

 

where 𝑅 ̅ and �̅� are mean values of R and Q respectively, 𝜎𝑅
2  and 𝜎𝑄

2 are their variance values 

(Ghali, et al., 2009). If the independent random variables R and Q have lognormal random variable, 

β given as: 

 

𝛽 =
𝜇𝐿 𝑛 (

𝑅
𝑄)

√𝑉𝑅
2 + 𝑉𝑄

2 

=
𝐿𝑛𝜇𝑅 − 𝐿𝑛𝜇𝑄

√𝑉𝑅
2 + 𝑉𝑄

2 

 (10) 

where 𝜇𝑅 and 𝜇𝑄 are mean values, 𝑉𝑅
2 and 𝑉𝑄

2 are coefficients of variation of R and Q (Popov, 

1990). 

Observe that the reliability index depends only on the means and standard deviations of the random 

variables. Therefore, this 𝛽 is called a second-moment measure of structural safety because only 

the first two moments (mean and variance) are required to calculate β (Ghali, et al., 2009). 

For nonlinear LSF, an approximate answer can be obtained by linearizing the nonlinear function 

using two terms of a Taylor series expansion. The result is: 
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𝑔(𝑋1, 𝑋2, … . , 𝑋𝑛 ) ≈ �̅� + ∑ ((𝑋𝑖 − 𝑥�̅�)   
𝜕𝑔

𝜕𝑋𝑖 
) 

𝑛

𝑖=1

 (11) 

 

where �̅� is a value of 𝑔 calculated with chosen values of the variables. One choice is the mean 

values of the random variables, giving an approximate mean value of 𝑔: 
 

�̅� = 𝑔((𝑥1̅̅̅  , 𝑥2̅̅ ̅ , … . , 𝑥𝑛 ̅̅ ̅̅  ) = 𝑔({𝑥 ̅}) (12) 
 

The first term in Eq. (11) is a constant; the remaining terms are linear combinations of the variables 
(𝑋𝑖 − 𝑥�̅�), with �̅�𝐿 constant, the approximate reliability index (Ghali, et al., 2009). 
 

𝛽 ≈
 �̅�

(∑ (𝑎𝑖 𝑋𝑖 )2𝑛
𝑖=1  )

1
2

 𝑤𝑖𝑡ℎ 𝑎𝑖 =
𝜕𝑔

𝜕𝑋𝑖

|
𝑎𝑡 (�̅�)

 (13) 

 

The reliability index defined in Eq. (13) is called a first-order second-moment mean value 

reliability index. It is a long name, but the underlying meaning of each part of the name is very 

important: First order because of the use of first-order terms in the Taylor series expansion. Second 

moment because only means and variances are needed. Mean value because the Taylor series 

expansion is about the mean values (Nowak & Collins, 2000). 

In this paper the LSF for each of deflection and moment are linear and all of resistance and demand 

samples have lognormal probability density function as illustrated in Section 6 therefor use Eq. 

(10) to calculate 𝛽. 
 

 

8. RESULTS AND CONCLUSIONS 

Based on statistical features of random variables mention earlier, failure probabilities for the beam 

are summarized as follows. When using the Monte Carlo simulation method the 𝑃𝑓 for deflection 

due to randomness in dimensions and the material property is equal to 0.0114 and due to 

randomness in loads is equal to 0.0688. While for the strength limit state there are no trials for 

𝑔(𝑥) ≤ 0 when variation due to dimension, material property, and due to applied loads, therefore, 

𝑃𝑓 for moment limit state function is negligible for these two scenarios. 

By using the FORM and calculate 𝛽 is equal to: 

• 𝛽 For deflection due to randomness in dimensions and material is equal to 2.333 and the 

corresponding 𝑃𝑓 equal to 0.0098. 

• 𝛽 For deflection due to randomness in loads is equal to 1.445 and the corresponding 𝑃𝑓 equal 

to 0.074. 

• 𝛽 For moment limit state function due to randomness in dimensions and material is equal to 

15.312 and the corresponding 𝑃𝑓 equal to 3.179×10−53. 

• 𝛽 For moment limit state function due to randomness in loads is equal to 7.823 and the 

corresponding 𝑃𝑓 equal to 2.579×10−15. 

It can notice that the results from two methods are very close and the 𝑃𝑓 for the modes deal with 

variation in loads is greater than modes deal with variation in dimensions and material property. 

The deflection and the moment limit state functions seem more sensitive to the randomness in load 

than the randomness in the dimensions and material properties, and the deflection is more critical 
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to the randomness of the input variables. As a conclusion when failure probability is low, one can 

use element critical failure probability. 
 

NOMENCLATURE 

a, b = distance from beam supports to concentrated load, m. 

B1 = coefficient of skewness. 

B1 = coefficient of kurtosis. 

E = modulus of elasticity, MPa. 

𝐹𝐷= concentrated superimposed load, kN. 

𝐹𝐿= concentrated live load, kN. 

𝐹𝑦= yield stress, MPa. 

M= sample mean. 

N = sample size. 

Q = load effect (demand). 

R = resistance (capacity). 

�̅� = mean of Q 

�̅� = mean of R 

S = standard deviation. 

𝑆𝑥= elastic section modulus. 

v = variance. 

𝑊𝐷= uniform beam weight. 

𝛽 = reliability index. 

ℓ = span girder. 

𝜎𝑅
2= variance R. 

𝜎𝑄
2= variance Q. 

𝑉𝑅
2 = coefficient of variance for R. 

𝑉𝑄
2 = coefficient of variance for Q. 

𝜑 and 𝜑−1= standard normal cumulative distribution function and its invers. 

FORM = first-order reliability method. 

LSF = limit state function 

MCSM = Monte Carlo simulation method. 

𝑃𝑓 = probability failure. 

PDF = probability density function. 
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Appendix A Matlab Codes 

 

Table A-1. Matlab code to generate a random sample, plot histogram, and determine the statistical 

properties for the mid-span deflection due to the first scenario. 
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Table A-2. Matlab code to generate a random sample, plot histogram, and determine the statistical 

properties for the applied moment of the girder due to the first scenario. 
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Table A-3. Matlab code to generate a random sample, plot histogram, and determine the statistical 

properties for the mid-span deflection due to the second scenario. 
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Table A-4. Matlab code to generate a random sample, plot histogram, and determine the statistical 

properties for the applied moment of the girder due to the second scenario. 
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Table A-5. Matlab code to generate a random number, plot histogram, and determine the statistical 

properties for maximum allowable deflection. 

 

 

 

Table A-6. Matlab code to generate a random number, plot histogram, and determine the statistical 

properties for 𝑀𝑛. 
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