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ABSTRACT 

This paper proposes improving the structure of the neural controller based on the identification 

model for nonlinear systems. The goal of this work is to employ the structure of the Modified 

Elman Neural Network (MENN) model into the NARMA-L2 structure instead of Multi-Layer 

Perceptron (MLP) model in order to construct a new hybrid neural structure that can be used as 

an identifier model and a nonlinear controller for the SISO linear or nonlinear systems. Two 

learning algorithms are used to adjust the parameters weight of the hybrid neural structure with 

its serial-parallel configuration; the first one is supervised learning algorithm based Back 

Propagation Algorithm (BPA) and the second one is an intelligent algorithm namely Particle 

Swarm Optimization (PSO) algorithm. The numerical simulation results show that the hybrid 

NARMA-L2 controller with PSO algorithm is more accurate than BPA in terms of achieving fast 

learning and adjusting the parameters model with minimum number of iterations, minimum 

number of neurons in the hybrid network and the smooth output one step ahead prediction 

controller response for the nonlinear CSTR system without oscillation. 

Keywords: NARMA-L2Model, MLP neural Network, Modified Elman Neural Network, 

Back Propagation Algorithm, Particle Swarm Optimization, Nonlinear CSTR System. 

 

 مبنيا على اساس التعريف خزان مفاعل مستمر الاثارة اللاخطيتصميم مسيطر عصبي هجين جديد لنظام 

 

 احمد صباح الاعرجي

 أستاذ مساعد دكتور

 الجامعة التكنولوجية -قسم هندسة السيطرة والنظم
 

 زنكنهالشيماء جعفر

 ماجستير

 الجامعة التكنولوجية -قسم هندسة السيطرة والنظم

 الخلاصة
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 ي( والثاني هBPA) الانتشار العكسيان اول خوارزمية تم استخدامها في هذا البحث هي خوارزمية ; لتوازيا-التوالي

مع PSOأن خوارزمية ان نتائج المحاكاة العددية اثبتت (.PSO) حشد الجسيمات االمثليةوالتي  كيةالذخوارزمية ال

مع الحد الأدنى عناصر النموذج ريع وتعديل هي أكثر دقة من حيث تحقيق التعلم الس NARMA-L2 المسيطر الهجين

التعلم وكذلك اقل عدد للعقد الشبكة العصبية الهجينة مع دقة عالية في الإخراج وبدون تذبذب الاستجابة  التكرارمن عدد 

 .للاخطيةا خزان مفاعل مستمر الإثارةنظام للخطوة واحدة التنبؤي للمسيطر 

, خوارزمية الانتشار  MENN, الشبكة العصبية  MLPشبكة العصبية , الNARMA-L2نموذج : الرئيسية الكلمات

 CSTRالنظام اللاخطية ,لمثليةحشد الجسيمات االعكسي,

 

1. INTRODUCTION 

      Artificial Neural networks (ANN) are a set of neurons that imitate the biologic neural 

networks of the encephalon of creatures; especially, the neuronal-synaptic techniques that are 

based on only experimental data where they memorize, learn and recover information. Because 

of their ability to identify complex functions, they are essentially utilized in machine learning. 

ANNs can execute perfect performance to learn the input-output relations of nonlinear processes; 

therefore they are one of the most important fields of artificial intelligence. The output can be 

evaluated quicker and with preferable qualifications when the network is learned by inserting a 

sufficient dataset of input-output pairs. ANN-based branches are still in use until these days to 

cope with different problems in various empirical applications, extending from identification the 

nonlinear system to process monitoring, adaptive control, processing images, as well as 

renewable and sustainable energy, medical diagnostics, pattern recognition and the applications 

that are based on laser Al-Dunainawi, et al., 2017. 

Generally, the Nonlinear Autoregressive Moving Average (NARMA) neural network model has 

been applied successfully for identifying and controlling different types of the dynamic systems, 

George and Basu, 2012, such as: George, 2008, utilized the application of NARMA-L2 for the 

speed control of Separately Excited DC Motor using the conventional controllers and compared 

the performance of the suggested controller which is a NARMA-L2 neural network with the 

traditional one which is sim-power systems based chopper controller DC motor model. Using 

MATLAB toolbox, the models are simulated and the system modeling is prepared, and in the 

result, the NARMA-L2 controller has eliminated the chopper and its control circuit also was 

capable of regulating the speed about the rated value. Also, the authors, Valluru, et al., 2012, 

compared the execution of the NRMA-L2 Neuro controller with the conventional PID controller, 

for regulating the speed of a DC motor connected in series. The NARMA-L2 controller showed 

an excellent speed tracking performance with no overshoot. 

Hua-Min, et al., 2011, proposed an off-line trained NARMA-L2 neural network to identify the 

forward dynamics of the nonlinear non-minimum phase system of Unmanned Aerial Vehicle 

(UAV). The identification is done by redefining and inverting the output to force the real output 

to approximately track the desired trajectory. A good tracking performance results were achieved 

by using the proposed control scheme. The author, Putrus, 2011, used different control 

strategies for jacketed Continuous Stirred Tank Reactor (CSTR) which were conventional 

feedback control (PI and PID) and neural network (NARMA-L2, and NN Predictive) controller 

in order to develop the dynamic behavior and the control was done through utilizing two 

methods for finding the optimum parameters. The results showed that NARMA-L2 is the best 

controller and it is better than the NN Predictive in terms of Mean Square Error (MSE). Also, the 

authors Jeyachandran and Rajaram, 2014, showed that in controlling the CSTR process, the 

NARMA-L2 neural controller is faster and has good setpoint tracking capability as it is 

compared with the predictive neural and Neuro-Fuzzy controllers. Kananai and Chancharoen, 

2012, proposed a stiff PD with the NARMA-L2 controller for a nonlinear arm of the robot 

mechanical system in order to give a good tracking accuracy. The authors Pedro and Ekoru, 
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2013, compared the performance of NARMA-L2 controller with a passive linear controller for 

the vehicle suspension system. The results showed that the NARMA-L2-based active vehicle 

suspension system performed better than the passive vehicle suspension system. In addition to 

that, Fourati and Baklouti, 2015, showed that controlling a bioreactor system by NARMA-L2 

neural control strategy compared with a direct inverse neural controller is more fruitful, where 

NARMA-L2 was able to take care of nonlinear aspect and remove the output static error as well 

as it has a better trajectory tracking ability. Humod, et al., 2016, utilized Direct Torque Control 

for three phases Permanent Magnet Synchronous Motor to improve the speed and torque 

dynamic responses. They depend on two controllers to make a comparison and select the better, 

NARMA-L2 controller and optimal PI controller (PI-PSO), where (NARMA-L2) is trained 

based on optimal PI controller (PI-PSO) data. The result shows that the NARMA-L2 controller 

improved the performance of DTC and has superiority over the optimal PI controller for PMSM. 

Al-Dunainawia, et al., 2017, proposed a NARMA-L2 controller but this time by utilizing 

ANFIS architecture. The new control disposal involves fuzzy inference system FIS type Sugeno 

to plot the system's input-output characteristics. They utilized Back-propagation with Least 

Square Error as a hybrid method to learn the submodels and PSO to find the optimum 

parameters. By doing a comparison with other controllers, such as PID like controller that tunes 

fuzzy with GA or with PSO, etc.., the results show that the NARMA-L2 with PSO-ANFIS 

attained a lot of features and it's too efficient in all manners. The motivation of this paper is taken 

from, Putrus, 2011 and Jeyachandran and Rajaram, 2014, where the modeling and the 

controlling for the nonlinear CSTR system are still challenging.  

The main contribution of this work is the construction of a new hybrid neural network model 

based on NARMA-L2 with Modified Elman Neural Network structure in order to improve the 

performance of modeling and controlling of the nonlinear system. 

The new proposed hybrid NARMA-L2 modeling and controller with PSO algorithm is more 

accurate compared to hybrid NARMA-L2 with BP learning algorithm in terms of: 

 Learning speed. 

 Hidden layer node number. 

 Hybrid neural network model order. 

 Least MSE. 

 Oscillation reduction 

 

The paper organization consists of the following sections: Section 2 describes the identification 

model based on the NARMA-L2 neural network and the proposed hybrid neural structure. In 

section 3, the simulation results are discussed in details. Finally, section 4 contains the 

conclusions of the entire work. 

2. IDENTIFICATION OF DYNAMICAL SYSTEMS USING NEURAL NETWORK 

MODELING 

In general, the system identification technique is a very important modeling technique for control 

system applications also it is considered as a very essential step for analysis and controller design 

of nonlinear processes in many applications. There are five standard steps in the identification 

model based on neural network, Nells, 2001, as shown in Fig. 1. This section focuses on 

nonlinear system identification based on the NARMA-L2 neural network model structure.  

2.1 NARMA-L2 Model: 

Nonlinear Auto Regressive Moving Average (NARMA) model is an accurate representation for 

nonlinear discrete-time dynamic plants. Also, it is used to get exact input-output behavior for a 
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finite-dimensional space in the neighborhood of the equilibrium state. The implementation of 

such non-linearity in real-time control systems is very difficult and to overcome the 

computational complexity of the NARMA model, NARMA-L1and NARMA-L2 are introduced, 

Sharma, 2014.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For practical implementation, NARMA-L2 is more convenient by using multilayer neural 

networks and it is considered as the most popular neural network control architecture which is 

used to transform nonlinear system dynamics into linear dynamics by canceling the 

nonlinearities. The obvious advantage of the NARMA-L2 controller is that there is no need for 

additional trained sub model. The neuro-controllers, such as Model Reference Adaptive Control 

(MRAC) and Model Predictive Controller (MPC) required an additional submodel to be trained, 

Al-Dunainawi, et al., 2017. Taylor expansion is the main difference between these two 

approximations for NARMA-L1 Taylor expansion is around (y(k), y(k-1), …, y(k-n+1), u(k)=0, 

u(k-1)=0, …, u(k-n+1)=0)  while for NARMA-L2 Taylor expansion is around the scalar  u(k)=0. 

The approximations are given as follows, Sharma, 2014: 

For the NARMA-L1 model is: 

 

𝑦𝑝(𝑘 + 𝑑) = 𝑓[̅𝑦𝑝(𝑘), … , 𝑦𝑝(𝑘 − 1), 𝑦𝑝(𝑘 − 𝑛 + 1)] + ∑ 𝑔𝑖
𝑛−1
𝑖=1 [𝑦𝑝(𝑘), … , 𝑦𝑝(𝑘 − 1), 𝑦𝑝(𝑘 −

𝑛 + 1)] × 𝑢(𝑘 − 𝑖)                 (1) 

Where, 

𝑓̅ = F[𝑦𝑝(𝑘), … , 𝑦𝑝(𝑘 − 1), … 𝑦𝑝(𝑘 − 𝑛 + 1)]             (2) 

𝑔𝑖 =
𝜕𝐹

𝜕𝑢(𝑘−𝑖)
                  (3) 

 

For the NARMA-L2 model is: 

Accept Model 

Not Accept 

Model: revise 

Figure 1. Five standard steps of identification algorithm. 
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𝑦𝑝(𝑘 + 𝑑) = 𝑓[𝑦𝑝(𝑘), … , 𝑦𝑝(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), … 𝑢(𝑘 − 𝑛 + 1)] + 𝑔[𝑦𝑝(𝑘), … , 𝑦𝑝(𝑘 −

𝑛 + 1), 𝑢(𝑘 − 1), … 𝑢(𝑘 − 𝑛 + 1)] × 𝑢(𝑘)                                                                                 (4) 

Where 

𝑓 = F[𝑦𝑝(𝑘), … , 𝑦𝑝(𝑘 − 1), 𝑦𝑝(𝑘 − 𝑛 + 1), 𝑢(k − 1), … 𝑢(𝑘 − 𝑛 + 1 )]                                   (5) 

𝑔 =
𝜕𝐹

𝜕𝑢(𝑘)
                                                                                                                                      (6) 

   

The f [-] function in the NARMA-L1 model is the only function of the past values of the output y 

[-] while g [-] function is a function of the past values of the output y [-] and the control effort u 

[-]. But, the f [-] and g [-] functions in the NARMA-L2 model, are the functions of the past 

values of both the output y [-] and control effort u [-] therefore, the NARMA-L2 model is 

preferred to act as a universal tracking controller because its realization is simpler compared to 

NARMA-L1 model, Sharma, 2014. 

So the NARMA-L2 neural network model consists of two neural networks as the nonlinear 

functions 𝑓[−]and �̂�[−] as N1 [-] and N2 [-], respectively, and the type of the neural network 

structure is Multi-Layer-Perceptron (MLP).   

Fig.2 shows the general structure of the NRAMA-L2 model based on MLP with a serial-parallel 

configuration to identify the nonlinear system. The network’s output yields the prediction error, 

Zurada, 1992. 

𝑒 (𝑘 + 1) = 𝑦𝑝(𝑘 + 1) − 𝑦𝑚(k + 1)        (7) 

 

 

 
Figure 2.NARMA-L2 identification model with serial-parallel configuration. 

 

The learning algorithm is usually based on the minimization (with respect to the network 

weights) of the following objective cost function: 

𝐸 =
1

𝑛𝑝
∑ (ei (𝑘 + 1))2𝑛𝑝

𝑖=1 =
1

𝑛𝑝
∑ 𝑦𝑝

𝑖 (𝑘 + 1)𝑛𝑝
𝑖=1 − 𝑦𝑚

𝑖 (k + 1))2                                                  (8) 

Where np: is the number of patterns. 

ei: is the error of each step. 

𝑦𝑝
𝑖 : is the actual output of the plant of each step. 
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Figure 3.The structure of multi-layer perceptron neural networks. 

𝑦𝑚
𝑖 : is the model output of the plant of each step. 

 

From Fig. 2, the training mechanism of the N1[-] and N2[-] is applied as a supervised learning 

Back Propagation algorithm in order to reduce the error between the actual output yp(k + 1)and 

neural model output ym(k + 1)and is equal to zero approximately then the model will complete 

the same actual output response. 

When identification of the plant is complete, then g [-] can be approximated by ĝ [-] and f [-] by 

𝑓[−]  and the NARMA-L2 model of the plant can be described in Eq. (9). 

𝑦𝑚(𝑘 + 1) = 𝑓[𝑦𝑝(𝑘), … , 𝑦𝑝(𝑘 − 𝑛 + 1), 𝑢(𝑘 − 1), … 𝑢(𝑘 − 𝑛 + 1 )] + ĝ[𝑦𝑝(𝑘), … , 𝑦𝑝(𝑘 −

𝑛 + 1), 𝑢(𝑘 − 1), … 𝑢(𝑘 − 𝑛 + 1 )] × 𝑢(𝑘)                                                                                 (9) 

 

The Jacobian of the plant can be defined as the ĝ [-] neural network and the sign definite in the 

operation region of the plant is used to ensure the uniqueness of the plant inverse at that 

operating region, Jeyachandran and Rajaram, 2014, therefore, there is a linear relationship 

between the control effort and the output in the NARMA-L2 model So the control effort that 

gives the output which is equal to the desired value is taken from the control law as in Eq. (10). 

𝑢(𝑘 + 1) =
𝑦𝑑𝑒𝑠 (𝑘+1)−�̂�[𝑦𝑝(𝑘),… ,𝑦𝑝(𝑘−𝑛+1),𝑢(𝑘−1),…𝑢(𝑘−𝑛+1)]

ĝ[𝑦𝑝(𝑘),… ,𝑦𝑝(𝑘−𝑛+1),𝑢(𝑘−1),…𝑢(𝑘−𝑛+1)]
                                                       (10) 

 

The structure of the multi-layer perceptron (MLP) neural network is shown in Fig. 3, which 

consists of three layers: the input layer, the hidden layer and the output layer, Zurada, 1992 and 

Al-Araji, 2009. So the network weights can be defined as follows: 

anV : is the hidden layer weight matrix. 

baW : is the output layer weight matrix. 

To illustrate the calculations, ponder the general ath neuron in the hidden layer shown in Fig. 3.  

 

 

 

 

  

 

  

  

 

 

 

 
 

                                                                                                          Hidden Layer 

 

 

The weight matrix, V , represents the weights between the input and hidden layers. Firstly, the 

weighted sum anet  is calculated as in Eq. (11), Zurada, 1992 and Al-Araji, 2009. 





nh

a

nana ZVnet
1

                          (11) 
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Where, nh: is the hidden nodes number. 

Secondly, the neuron output of ah is computed as a continuous sigmoid function of the anet  as in 

Eq. (12), Zurada, 1992 and Al-Araji, 2009. 

H( anet )= 1
1

2



 anet

e
              (12)

      

Once, hidden layer outputs are obtained, they will be passed to the output layer where a one 

linear neuron is used to calculate the weighted sum (neto) of its inputs as in Eq. (13). 

neto b  = 



nh

a

aba hW
1

               (13) 

Where 

baW  : is the weight between the hidden neuron ah  and the output neuron. 

 

The one linear neuron passes the sum (neto b ) through a linear function of slope 1 as in Eq. (14). 

)( bb netcLO                             (14) 

2.2 The Proposed Hybrid Neural Network Model 
The NARMA-L2 model with modified Elman neural network structure is used to propose a new 

hybrid neural network model in order to improve the performance of modeling and controlling of 

the nonlinear system. Thus, the structure of Modified Elman Neural Network (MENN) is shown 

in Fig. 4.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.The structure of modified Elman neural networks. 

 

It consists of four layers as explained below, Medsker and Jain, 2001; Abdulkarim and Garko, 

2015. 

 The input layer which is only a buffer layer “Scale Layer” 

 The output which represents a linear activation function and it sums the fed signals.  

 The hidden layer which has a nonlinear activation function such as the sigmoidal function. 

 The context layer which is used only to memorize the previous activation of the hidden layer. 

H 

H 

L 𝑈𝑖 

α 

Output layer 

Context layer 

𝑦𝑚(k + 1) 

β 
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From Fig. 4, it can be seen that the following equations can be used, Al-Araji, et al., 2011. 

h (k)=F[V1U(k),V2ℎ°(𝑘)]        (15) 

O (k) =Wh (k)        (16) 

Where, 

V 1: input units weight matrix. 

V 2: context units weight matrix. 

W: weight matrix. 

F: is a non-linear vector function. 

 

The output of the context unit in the modified Elman network is given by Eq. (17) as in Fig. 5: 

ℎ𝑗
°(𝑘) = 𝛼ℎ𝑗

°(𝑘 − 1) + 𝛽ℎ𝑗(𝑘 − 1)       (17) 

Where, 

ℎ𝑗
°(𝑘): the jth context unit output;  ℎ𝑗(𝑘): the jth hidden unit output;  𝛼: Self-connections feedback 

gain;  𝛽:Weight from the hidden units to the context units at the context layer. 

 

 

 

 

 

 

Figure 5.The connection neuron in the hidden layer of MENN. 

 

The adopted value of the same for all self-connections and is not modified by the training 

algorithm. The value of 𝛼 and 𝛽are selected randomly between (0 and 1). A value of 𝛼 nearer to 

1 enables the context unit to aggregate more pattern outputs.  

To explain the calculations in the hidden layer, firstly, it considers the general jth neuron in the 

hidden layer with weight V1j,i where the ith is the inputs to this neuron and the jth neuron in the 

context layer with weight V2j,i. So it is calculating the weighted sum jth net of the inputs as in Eq. 

(18). 

 

𝑛𝑒𝑡𝑗 = ∑ 𝑉1𝑗,𝑖
𝑛𝑖
𝑖=1 × 𝑋𝑖 + 𝑉2𝑗,𝑛𝑖+1 × ℎ𝑗

°                                                                                      (18) 

Then the output of the neuron ℎ𝑗   is calculated as the continuous bipolar sigmoid function of the 

𝑛𝑒𝑡𝑗 as in Eq. (19): 

𝐻(𝑛𝑒𝑡𝑗) =
2

1−𝑒
−𝑛𝑒𝑡𝑗

− 1                                                                                                              (19) 

 

For single output neural network in the output layer, it uses a single linear neuron to calculate the 

weighted sum (𝑛𝑒𝑡𝑜)as in Eq. (20). 

𝑛𝑒𝑡𝑜𝑘 = ∑ 𝑊1,𝑗 × ℎ𝑗
𝑛𝑘
𝑗=1                                                                                                               (20) 

Where, 

nh: is the number of the hidden neurons (nodes). 

 

Then the linear activation function in the single neuron in the output leads to pass the sum 

(𝑛𝑒𝑡𝑜𝑘) as in Eq. (21): 

𝑂𝑘 = 𝐿(𝑛𝑒𝑡𝑘)                                                                                                                             (21) 

Where    L(x) = x. 

H 

ℎ𝑖
𝑜(k) 

𝑈𝑖(k) 

𝑽𝟏𝒋,𝒊 

𝑽𝟐𝒋,𝒊 

ℎ𝑗 
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The proposed new hybrid NARMA-L2 neural structure based on MENN is as shown in Fig. 6, 

where it replaces the MLP neural network by MENN to improve the modeling and controlling of 

nonlinear system in terms of fast leaning model with minimum number of epoch and minimum 

number of nodes in the hidden layer, increasing the order of the model which leads to reduce the 

output oscillation and generate the best control action for one step ahead prediction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.The proposed NARMA-L2 based MENN identification model. 

 

The output of the model will be as in Eq. (22). 

ym(k + 1)=N1+N2×u (k)                                                                                                           (22) 

 

2.3. Learning Algorithm: 

In this work, two learning algorithms are used to learn and adjust the weight parameters of the 

hybrid neural structure, which are: 

 

2.3.1. Back Propagation Algorithm (BPA): 

The back-propagation training algorithm is the most commonly used algorithm in training 

artificial neural networks (ANN), Al-Araji, et al., 2011. It performs gradient descent to adjust 

the weights of a network such that the overall network error is minimized. Conceptually, an 

epoch calculates the output of the network using feedforward pass for each training pattern and 

propagates errors signals back from the output layer towards the input layer to determine weight 

changes. 

The learning rate η which is directly proportional to the size of steps taken in the weight space is 

a very important parameter in the training process. A too small η value may lead to a very slow 

learning process while a large value may lead to a divergent behavior. A variable learning rate 

will do better if there are many local and global optima for the objective function, Abdulkarim 

and Garko, 2015. The equations of the back-propagation learning algorithm for the NARMA-L2 

mode based MLP neural network are as follows: 

 The connection matrix between the hidden and output layers is: 

∆𝑊𝑘𝑗(𝑘 + 1) = −𝜂
𝜕𝐸

𝜕𝑊𝑘𝑗
                                                                                                            (23) 

𝑦𝑚(k + 1) 

 

  

× 

+ 

𝑦𝑝(k

+ 1) 

𝑧−1 

𝑧−𝑛+1𝑧−1

𝑧−𝑛+1 

𝑧−1 

y

y

 

U(

k) 
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𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                                                      (24) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                                            (25) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑞(𝑘+1)
×

𝜕𝑞(𝑘+1)

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                      (26) 

∆𝑊𝑘𝑗(𝑘 + 1) = η × ℎ𝑗 × 𝑒𝑘                                                                                                       (27) 

𝑊𝑘𝑗(𝑘 + 1) = 𝑊𝑘𝑗(𝑘) + ∆𝑊𝑘𝑗(𝑘 + 1)                                                                                      (28) 

 The connection matrix between input and hidden layers is: 

∆𝑉𝑗𝑖(𝑘 + 1) = −𝜂
𝜕𝐸

𝜕𝑉𝑗𝑖
                                                                                                                (29) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑉𝑗𝑖
                                                                                                                        (30) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑉𝑗𝑖
                                                                                                            (31) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑞(𝑘+1)
×

𝜕𝑞(𝑘+1)

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
×

𝜕𝑛𝑒𝑡𝑘

𝜕ℎ𝑗
×

𝜕ℎ𝑗

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑉𝑗𝑖
                                                            (32) 

∆𝑉𝑗𝑖(k + 1) = η × f(𝑛𝑒𝑡𝑗)′ × 𝑈𝑖 ∑ 𝑒𝑘𝑊𝑘𝑗
𝐾
𝑘=1                                                                                           (33) 

𝑉𝑗𝑖(𝑘 + 1) = 𝑉𝑗𝑖(𝑘) + ∆𝑉𝑗𝑖(𝑘 + 1)                                                                                             (34) 

 

The equations of the back propagation learning algorithm for the NARMA-L2 mode based 

MENN are as follows: 

 The connection matrix between the hidden and the output layers is: 

∆𝑊𝑘𝑗(𝑘 + 1) = −𝜂
𝜕𝐸

𝜕𝑊𝑘𝑗
                                                                                                             (35) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                                                      (36) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                                            (37) 

𝜕𝐸

𝜕𝑊𝑘𝑗
=

𝜕𝐸

𝜕𝑞(𝑘+1)
×

𝜕𝑞(𝑘+1)

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑊𝑘𝑗
                                                                                      (38) 

∆𝑊𝑘𝑗(𝑘 + 1) = η × ℎ𝑗 × 𝑒𝑘                                                                                                       (39) 

𝑊𝑘𝑗(𝑘 + 1) = 𝑊𝑘𝑗(𝑘) + ∆𝑊𝑘𝑗(𝑘 + 1)                                                                                      (40) 

 The connection matrix between context and hidden layers is as follows: 

∆𝑉𝐶𝑗𝑐(𝑘 + 1) = −𝜂
𝜕𝐸

𝜕𝑉𝐶𝑗𝑐
                                                                                                           (41) 

𝜕𝐸

𝜕𝑉𝐶𝑗𝑐
=

𝜕𝐸

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑉𝐶𝑗𝑐
                                                                                                                     (42) 

𝜕𝐸

𝜕𝑉𝐶𝑗𝑐
=

𝜕𝐸

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑐
×

𝜕𝑛𝑒𝑡𝑐

𝜕𝑉𝐶𝑗𝑐
                                                                                                          (43) 

𝜕𝐸

𝜕𝑉𝐶𝑗𝑐
=

𝜕𝐸

𝜕𝑞(𝑘+1)
×

𝜕𝑞(𝑘+1)

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
×

𝜕𝑛𝑒𝑡𝑘

𝜕ℎ𝑗
×

𝜕ℎ𝑗

𝜕𝑛𝑒𝑡𝑐
×

𝜕𝑛𝑒𝑡𝑐

𝜕𝑉𝐶𝑗𝑐
                                                          (44) 

∆𝑉𝑗𝑖(k + 1) = η × f(𝑛𝑒𝑡𝑗)′ × 𝑈𝑖 ∑ 𝑒𝑘𝑊𝑘𝑗
𝐾
𝑘=1                                                                              (45) 

𝑉𝐶𝑗𝑐(𝑘 + 1) = 𝑉𝐶𝑗𝑐(𝑘) + ∆𝑉𝐶𝑗𝑐(𝑘 + 1)                                                                                   (46) 

 The connection matrix between the input layer and the hidden layer is: 

∆𝑉𝑗𝑖(𝑘 + 1) = −𝜂
𝜕𝐸

𝜕𝑉𝑗𝑖
                                                                                                                (47) 



Journal  of  Engineering   Volume  25    April    2019 Number  4 
 

 

77 
 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑛𝑒𝑡
×

𝜕𝑛𝑒𝑡

𝜕𝑉𝑗𝑖
                                                                                                                        (48) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑉𝑗𝑖
                                                                                                           (49) 

𝜕𝐸

𝜕𝑉𝑗𝑖
=

𝜕𝐸

𝜕𝑞(𝑘+1)
×

𝜕𝑞(𝑘+1)

𝜕𝑜𝑘
×

𝜕𝑜𝑘

𝜕𝑛𝑒𝑡𝑘
×

𝜕𝑛𝑒𝑡𝑘

𝜕ℎ𝑗
×

𝜕ℎ𝑗

𝜕𝑛𝑒𝑡𝑗
×

𝜕𝑛𝑒𝑡𝑗

𝜕𝑉𝑗𝑖
                                                            (50) 

 

∆𝑉𝐶𝑗𝑐(k + 1) = η × f(𝑛𝑒𝑡𝑗)′ × ℎ𝑐
𝑜 ∑ 𝑒𝑘𝑊𝑘𝑗

𝐾
𝑘=1                                                                          (51) 

𝑉𝑗𝑖(𝑘 + 1) = 𝑉𝑗𝑖(𝑘) + ∆𝑉𝑗𝑖(𝑘 + 1)                                                                                             (52) 

 

2.3.2. Particle Swarm Optimization (PSO): 

In general, the particle swarm optimization (PSO) is one of the most modern and powerful 

optimization methods that has been empirically shown to execute well on different optimization 

problems. It is utilized for finding the global best solution in the complex search space. PSO 

algorithm is inspired from the animal's community that doesn’t have leaders in their swarm as 

fishes and birds so they find the food randomly by following the position of the nearest member 

to the food. The PSO algorithm preserves multiple potential solutions at one time, so during each 

iteration, each solution is evaluated by an objective function to determine its fitness, Rini, et al, 

2011; Al-Araji, 2014. The PSO notion includes changing the velocity of every particle on the 

way to its pbest position which is its previous best value and it is associated only with a specific 

particle and the gbest position which represents the best value of the whole particles in the group 

at each time step. All the proposed hybrid NARMA-L2 weight parameters which are 158 

particles are randomly initialized and their velocities and positions are updated using the 

equations below, Al-Araji, 2014: 

∆𝑋𝑚

𝑘+1
= 𝑤∆𝑋𝑚

𝑘
+ 𝑐1𝑟1(𝑝𝑏𝑒𝑠𝑡𝑚

𝑘 − 𝑋𝑚

𝑘
) + 𝑐2𝑟2(𝑔𝑏𝑒𝑠𝑡𝑚

𝑘 − 𝑋𝑚

𝑘
)                                              (53) 

𝑋𝑚

𝑘+1
= 𝑋𝑚

𝑘
+ ∆𝑋𝑚

𝑘+1
                                                                                                                  (54) 

Where m = 1, 2, 3....pop; pop is the number of particles;𝑋𝑚
𝑘  is the weight of the particle m at 

iteration k; w: is the factor of weight inertia; c1 is cognition parameter and c2 is social parameter 

and it represents positive values where c1 and c2 must be less than 4; r1 and r2 are random 

values between 0 and 1, Al-Araji and Yousif, 2017. 

The procedures of the algorithm based on PSO is summarized as follows: 

 The hybrid NARMA-L2 weight parameters or the Particles (n) are generated randomly as the 

initial population in the local search.  

  Estimating the proposed cost function by using the mean square error in Eq.(8) for each 

particle. 

 Mark the pbest for every particle in the present searching point. The best-estimated value of 

pbest is taken to be gbest and the particle number with the best value is stored.  

 If the value of pbest is greater than the present pbest, the pbest value is replaced by the 

present value of the particle and gbest is changed with the best value if the greater value of 

pbest is greater than the present gbest, and the particle number that had the greater value is 

stored.  

 By using Eqs. (53 and 54) the updating part for each particle is done. 

 If the present number of iterations is less than its maximum limit of iterations number, revert 

to step two, else exit. 
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These steps are repeated for each sample of the on-line optimization algorithm for the hybrid 

NARMA-L2 parameters. 

 

3. SIMULATION RESULTS 

In this section, the nonlinear Continuous Stirred Tank Reactor (CSTR) process is taken to 

execute the identification algorithm in order to construct the model and controller design based 

on the hybrid NARMA-L2 neural network by using two learning algorithms that were explained 

in section 2. The mathematical model of the CSTR is defined by Eqs. (55) and (56) that have 

been taken from Al-Araji, 2015, and Dagher and Al-Araji, 2013. The parameters of the CSTR 

model can be defined in nominal operating condition as in Table 1. 

 

𝑑Ca

dt
=

q

Vol
(Caf − Ct(t)) − Ko × Ca(t) × e

⌈
−E

RT(t)
⌉
                                                                            (55) 

𝑑T(t)

dt
=

q

Vol
(Tf − T(t)) +

(−∆H)×Ko×Ca(t)

ρ×ρc

× e
⌈

−E

RT(t)
⌉

×
ρc×Cρc

ρc×Cρc
×Vol

× q
c
(t) [1 − e

−h0
ρc×Cρc

×qc(t)] ×

(Tcf − T(t))                                                                                                                                 (56) 

Where Ca (t): is the product concentration output 

; T (t): is the temperature of the reactor; qc (t): is the coolant flow-rate as the control signal. 

 

Table 1. The parameters of the  CSTR Operating Condition. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Parameter Description NominalValue 

Q Process flow-rate 100 l min-1 

Caf Intel feed concentration 1 mol l-1 

Tf Feed temperature 350 K 

Tcf Inlet coolant temperature 350 K 

Vol Reactor volume 100 l 

ha Heat transfer coefficient 7× 1010 cal min-1 K-1 

k0 Reaction rate constant 7.2× 1010 min-1 
𝐸

𝑅⁄  Activation energy 9.95 × 103 K 

∆H Heat of reaction -2 × 105cal mol-1 

ρ, ρ
c
 Liquid densities 1000 g-1 l-1 

Cρc
, Cp Specific heats 1 cal g-1 K-1 

qc Coolant flowrate 103.41 l. min-1 

T Reactor temperature 440.2 K 

Ca Product concentration 8.36 × 10−2mol l-1 
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Fig. 7 shows the schematic diagram of the CSTR process and the objective of the operation is to 

control the concentration Ca (t) by changing a coolant flow-rate qc (t) as a control signal then the 

temperature of the reactor is changed that leads to the product concentration is controlled 

Putrus, 2011, Jeyachandran and Rajaram, 2014, and Al-Araji, 2015. 

 

 

 
 

 

 

 

 

 

 

Figure 7.The CSTR with a cooling jacket. 

 

The input 200 samples to CSTR model is chosen as PRBS signal with high-frequency low 

amplitude change and the mean value is equal to zero in order to excite all nonlinear regions of 

the plant. For the open loop, the step changes in the coolant flow-rate response of the CSTR has 

a highly nonlinear dynamic behavior as shown in Figs. 8 –a and b respectively.  

 

 
Figure 8-a.The PRBS input signal used to excite the plant. 

 
Figure 8-b. The open loop response of the plant to the PRBS input signal. 
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Based on Fig. 8, there is an essential need for adding a scaling function at neural network 

terminals this function will perform a conversation between scaled values and actual values and 

vice versatile will help to prevail over the numeral problems that are associated with real values. 

A continuous time model representation is adopted to be numerically solved using the Runge 

Kuta fourth order method 4RK where the time constant is equal to 1min and the simulation step 

size for this purpose is equal to 0.1min based on Shanoon theorem.  

Based on Eq. (55) and Eq. (56), the dynamic model of the CSTR plant is described by Eq. (57) 

as 3rd order system depends on the high nonlinear in the dynamic behavior as shown in Fig. 8.  

𝑦𝑚(𝑘 + 1) = 𝑁1[𝑦𝑝(𝑘), 𝑦𝑝(𝑘 − 1), 𝑦𝑝(𝑘 − 2), 𝑢(𝑘 − 1), 𝑢(𝑘 − 2)] + 𝑁2[𝑦𝑝(𝑘), 𝑦𝑝(𝑘 −

1), 𝑦𝑝(𝑘 − 2), 𝑢(𝑘 − 1), 𝑢(𝑘 − 2)]𝑢(𝑘)                                                                                    (57) 

 

Where N1 [-] and N2 [-] are neural networks which approximate𝑓[−]and�̂�[−]  of Eq. (9), 

respectively. 

Since each of N1[-] and N2[-] has five inputs based on Eq. (57) and the nodes in the NARNA-L2 

neural network structure based on MENN is [5:11:11:1], where the number of node in the hidden 

layer based on 2n+1, the node number in the context layer and the node number in the output 

layer, respectively. 

During the training phase, many trials were made in order to find the optimal number of the 

nodes in the hidden layer for NARMA-L2 based on MENN model which was equal to 6 and the 

number of the training cycles was equal to 500 in the case of BPA, while the number of the 

training cycles by using PSO was equal to 200, therefore, the number of the nodes in the 

NARNA-L2 neural network structure based on MENN is [5:6:6:1]. 

Fig. 9-a shows the best response of the NARMA-L2 based MENN model with the actual plant 

output of pattern's learning after 500 epoch by using BPA andFig. 9-b shows the excellent 

response of the NARMA-L2 based MENN model with the actual plant output for learning 

patterns after 250 iterations by using PSO. So it can be observed that both model outputs are 

following actual plant output and without over learning problem occurred in the training cycle. 

 
Figure 9-a.The response of the NARMA-L2 based MENN model with the actual plant output 

for learning patterns and BPA. 
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Figure 9-b. The response of the NARMA-L2 based MENN model with the actual plant output 

for learning patterns and PSO. 

 

Figs. 10-a and b show the average of ten times of the MSE for the training phase in order to 

investigate the optimal nodes in the hidden layer of NARMA-L2 based MENN model with BPA 

and PSO. 

 

Figure 10-a.The optimal number of nodes to an average of ten times MSE of NARMA-L2 based 

MENN with BPA. 

 
Figure 10-b.The optimal number of nodes to an average of ten times MSE of NARMA-L2 based MENN 

with PSO. 

The Jacobian of the proposed hybrid model with PSO and BPA are shown in Fig. 11-a and b 

where N2[-]: signs definite in the region of interest which means that the models are inevitable 

and can be implemented for the controller as the inverse control structure. 
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Figure 11-a.The plant Jacobian for learning pattern of NARMA-L2 based on MENN model with 

BPA. 

 
Figure 11-b.The plant Jacobian for learning pattern of NARMA-L2 based on MENN model with PSO. 

 

The Mean Square Error (MSE) calculated for the latest epochs, which is defined by Eq.(8) can 

be shown in Fig.12-a of the NARMA-L2 based MENN model with BPA while Fig.12-b of the 

NARMA-L2 based MENN model with PSO.  

 

 
Figure 12-a. MSE for an optimal number of nodes (6 nodes) for NARMA-L2 based MENN 

model with BPA. 
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Fig. 13-a shows the reasonable response of the NARMA-L2 based MENN neural network model 

with the actual plant output for testing patterns using BPA while Fig. 13-b shows the excellent 

response of the NARMA-L2 based MENN model with the actual plant output for the same 

testing set using PSO. 

 
Figure 12-b. MSE for an optimal number of nodes (6 nodes) for NARMA-L2 based MENN model with 

PSO. 

 
Figure 13-a.The response of the NARMA-L2 based MENN model with the actual plant output 

for the tasting patterns by using BPA. 

 
Figure 13-b. The response of the NARMA-L2 based MENN model with the actual plant output for the 

tasting patterns by using PSO. 
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Three different values are used as step change desired output during 300 samples in order to 

confirm the proposed hybrid NARMA-L2 based MENN model has the ability to be a controller 

for tracking the desired output. Fig. 14 it can be observed that the actual output of the CSTR is 

excellent at tracking the desired output and it has small overshoot without oscillation in the 

output and more accurate as well as the steady state error equal to zero when it is used NARMA-

L2 based on MENN model with PSO learning algorithm than NARMA-L2 based on MENN 

model with BPA. 

 
Figure14. The response of the actual plant. 

 

Fig. 15 shows the control action of the hybrid neural controller which has a small spick action of 

the coolant flow-rate to track the desired concentration output and to minimize the steady-state 

error to the zero value. 

 
 

Figure 15. The coolant flow rate control signal based on the PSO algorithm. 

 

4. CONCLUSIONS 

The numerical simulation results of a new proposed hybrid NARMA-L2 model based on MENN 

with PSO algorithm is presented in this paper for modeling and controlling the nonlinear CSTR 

system compared with BP algorithm which shows the following capabilities: (i) Strong 
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adaptability performance of the nonlinear model output with no over-learning problem; (ii) Fast 

and stable finding the weight parameters of the model with minimum number of iterations; 

(iii)  Rising the speed of learning model; (iv) reducing the number of nodes in the hidden layer 

depending on the context layer; (v) Increasing the order of the hybrid neural network model 

depending on the self-connections and (vi) Best and smooth control action generation for one 

step ahead prediction which leads to excellent set point tracking without overshoot and no output 

oscillation. 
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