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ABSTRACT 

In this paper, an Anti-Disturbance Compensator is suggested for the stabilization of a 6-DoF 

quadrotor Unmanned Aerial vehicle (UAV) system, namely, the Improved Active Disturbance 

Rejection Control (IADRC). The proposed Control Scheme rejects the disturbances subjected to 

this system and eliminates the effect of the uncertainties that the quadrotor system exhibits. The 

complete nonlinear mathematical model of the 6-DoF quadrotor UAV system has been used to 

design the four ADRCs units for the attitude and altitude stabilization. Stability analysis has been 

demonstrated for the Linear Extended State Observer (LESO) of each IADRC unit and the overall 

closed-loop system using Hurwitz stability criterion. A minimization to a proposed multi-objective 

Output Performance Index (OPI) is achieved in the MATLAB environment to tune the IADRCs 

parameters using Genetic Algorithm (GA). The IADRC has been tested for the 6-DOF quadrotor 

under different tracking scenarios, including disturbance rejection and uncertainties elimination 

and compared with nonlinear and linear PID controllers. The simulations showed the excellent 

performance of the proposed compensator against the controllers used in the comparison. 

Keywords: Quadrotor; Active disturbance rejection; UAV; Extended State observer; Hurwitz Stability; 

unmanned aerial vehicle; trajectory tracking; wind disturbance 
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  الخلاصة

رباعي  (UAV) يقُترح معوض مضاد للاضطرابات من أجل تثبيت نظام للمركبات الجوية بدون طيار رباعي الاتجاه الورقة،في هذه 

أي التحكم المحسن في رفض الإزعاج. يرفض مخطط التحكم المقترح الاضطرابات التي يتعرض لها هذا النظام ويزيل تأثير  الدوران،

  لتصميم المحركات  النموذج الرياضي غير الخطي الكامل لنظام الطائرات بدون طيار رباعي    نظام رباعي. استخدمناالالشكوك التي يظهرها  

  (LESO)الممتد الموقف والارتفاع. لقد تم إثبات تحليل الثبات للمراقب الخطي  منظومات الأربعة لتحقيق الاستقرار في  ADRC وحدات

يتم تحقيق الحد الأدنى لمؤشر أداء  .  Hurwitz خدام معيار الاستقرارونظام الحلقة المغلقة الشامل باست  IADRC وحدة من وحدات لكل

 تم اختبار  .(GA) باستخدام الخوارزمية الجينية IADRC لضبط معلمات MATLAB المقترح في بيئة (OPI) المخرجات متعدد الأهداف

IADR الاضطرابات وإزالة الشكوك ومقارنتها مع في ظل سيناريوهات تتبع مختلفة بما في ذلك رفض  التحكم المحسن في رفض الإزعاج

 .غير الخطية والخطية. أظهرت المحاكاة الأداء الممتاز للمعوض المقترح ضد وحدات التحكم المستخدمة في المقارنة PID وحدات التحكم

تتبع  طيار،مركبة جوية بدون  الموسعة،مراقب الدولة   ،طيارالطائرات بدون  ،نشطاضطراب  رفض الرئيسية:الكلمات 

 .اضطراب الرياح المسار،

 

1. INTRODUCTION 
The quadrotor is an Unmanned Aerial Vehicle (UAV) that has four motors. Every two motors that 
are facing each other rotate in the counter-clockwise direction, whereas the other two motors rotate 
in the opposite direction of the first two motors (clockwise direction). The UAV quadcopter system 
has six degrees of freedom, three rotations about the Cartesian coordinates, called the attitude. 
Moreover, an altitude in the vertical direction and movement in two directions called the x-y 
positioning. Consequently, the motors are less than the number of degrees of freedom. For that 
reason, it is considered as a severely underactuated system. In recent years, quadrotor applications 
are increased because of its simplicity, low cost, different sizes for different applications, and easy 
to be implemented. There are a large variety of civil and military applications for quadrotors. Some 
of these applications are in research and education purposes (Belyavskyi, et al., 2017), healthcare 
(Dhivya and Premkumar, 2017), traffic monitoring (Abdullaha, et al., 2015), and multi-agent 
applications (Nathan, et al., 2011). These applications and many others need high maneuverability 
of the quadrotor and robustness of the control concerning disturbances such as wind and 
uncertainties such as actuator faults.  
Many studies have been done to overcome the disturbances and uncertainties that the quadrotor 
face during the mission while keeping its motion stable. Controllers such as linear PID has been 
proposed, but the performance was limited (Sahul, et al., 2014). The best way to deal with these 
problems is to estimate the disturbances, and many researchers have done this by proposing an 
observer-based control design (Jingjit, et al., 2014; Aboudonia, Rashad, et al., 2015; Wang and 
Chen, 2016). Another widely used approach is the active disturbance rejection control (ADRC), 
it makes use of an Extended State Observer (ESO) to estimate the disturbances and uncertainties 
so that the uncertainties and exogenous disturbance are grouped into a single state called, the “total 
disturbance” or “generalized disturbance”, which is estimated and cancelled in real-time fashion 
via the ESO. ADRC is a combination of three essential elements: State Error Feedback (SEF) 
controller, an ESO, and a Tracking Differentiator(TD).  

Moreover, the controller in the feedforward loop will work entirely for the stabilization of the 
nonlinear system (Chang et al., 2016; Dou, et al, 2017. Kong and Wen, 2017; Ma and Jiao, 
2017).  Model Predictive Control (MPC) enhanced by external forces are proposed and designed 
(Kocer, B. B. et al., 2019). (Razmi and Afshinfar, 2019) proposed a method for the position and 
attitude tracking control of a quadrotor UAV which combines a neural network adaptive scheme 
with sliding mode control. Backstepping control technique has been investigated to design optimal 
motion control for the quadrotor system (Saud and Hasan, 2018).  The work of (Abbas and 
Sami, 2018) demonstrated the design and implementation of a PID controller for the motion 
control of a real quadrotor. Moreover, the work included a new swarm optimization algorithm for 
the parameters tuning of the PID controller using Cultural Exchange Imperialist Competitive 
Algorithm. 
In some of the aforementioned studies, the control design was based on the approximate modeling 
of the nonlinear quadcopter UAV system (either a linearized modeling or an incomplete nonlinear 
model) while other studies didn’t take into consideration the uncertainties in the system and how 
to deal with them. Motivated by the above researches, in this paper, a control system for the 6-
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DoF quadrotor system is proposed and consists of four IADRCs, one for altitude subsystem and 
the other three for attitude subsystems. Each IADRC unit comprises of an Improved Tracking 
Differentiator (ITD) and a NonLinear PID (NLPID) controller, while the ESO was of linear type.  
 
The main contributions of this paper are fourfold, first, an Improved ADRC (IADRC) scheme is 
constructed for UAV 6-DoF quadrotor system which is a highly coupled under-actuated MIMO 
system based on an Improved State Error Feedback (ISEF) and Improved Tracking Differentiator 
(ITD). Second, the complete nonlinear mathematical model of the 6-DoF quadrotor UAV system 
has been adopted in the design and stability analysis of the IADRC configuration. Third, a new 
multiobjective Output Performance Index (OPI) has been proposed and included in the parameters 
design of the IADRC structure; it minimizes the integrated time absolute error, controller energy, 
and integrated time absolute of the control signal. Finally, a detailed stability analysis for the 
closed-loop control system of the nonlinear 6-DoF quadrotor UAV system using Hurwitz stability 
theorem has been introduced to emphasize the validity of the proposed control scheme. 
The rest of the paper is organized as follows: Section 2 discusses the quadrotor mathematical 
model, while the problem is stated in Section 3. The IADRC design is given in Section 4. Next, 
Section 5 presents the stability analysis for the Linear Extended State observer (LESO) and the 
closed-loop quadrotor system. The main results of simulations are presented and discussed in 
Section 6. Finally, Section 7 introduces the conclusions and future work. 

 
2. QUADROTOR MATHEMATICAL MODEL   

Quadrotors are a 6-DOF UAV with four rotors; this makes one uses a combination of rotors’speeds 

(Ω) to represent each DOF. Fig. 1 shows all possible movements for the quadrotor. The quadrotor 

mathematical model, according to Newton-Euler equation is shown in (1) and (2). All parameters 

used are as follows, [𝑥 𝑦 𝑧] is the linear position vector (meter), d is the drag coefficient 

(N.m.sec2), 𝑙 is the distance from the center to the motor (meter), b is the thrust coefficient 

(𝑁. 𝑠𝑒𝑐2), [Ω1 Ω2 Ω3 Ω4] is the rotors speed vector (𝑟𝑎𝑑/sec ), 𝑚 is the total mass (Kg), 𝑔 is the 

gravitational force (m/sec2), [𝜏𝑤𝑥 𝜏𝑤𝑦 𝜏𝑤𝑧] is the Wind torque vector (𝑁.𝑚), [𝑓𝑤𝑥  𝑓𝑤𝑦 𝑓𝑤𝑧] is the 

wind force vector ( 𝑁), [𝜏𝑥 𝜏𝑦 𝜏𝑧], is the control torques (N.m), 𝑓𝑡 is the total thrust of rotors (𝑁), 

[𝐼𝑥 𝐼𝑦 𝐼𝑧] is the moment of inertia vector (𝐾𝑔.𝑚2), [𝑝 𝑞 𝑟] is the Angular velocity vector 

(𝑟𝑎𝑑/sec ), [𝜙 𝜃 𝜓] is the Angular position vector (rad). For a more detailed derivation of the 

quadrotor mathematical model refer to ( Sabatino, 2015). The force and torques that act on the 6-

DOF quadrotor UAV system are described as follows, 

 

 

 

Figure 1. Quadrotor movements. 
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{
 
 

 
 𝑓𝑡 = 𝑏(𝛺1

2 + 𝛺2
2 + 𝛺3

2 + 𝛺4
2)

𝜏𝑥 = 𝑏𝑙(𝛺3
2 − 𝛺1

2)        

𝜏𝑦 = 𝑏𝑙(𝛺4
2 − 𝛺2

2)        

 𝜏𝑧 = 𝑑(𝛺2
2 + 𝛺4

2 − 𝛺1
2 − 𝛺3

2)

                       (1) 

 

 while the nonlinear state-space model of the 6-DoF quadrotor UAV system is given as, 

 

{
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
{
�̇� = 𝑐(𝜓)𝑐(𝜃)𝑢 + [𝑐(𝜓)𝑠(𝜙)𝑠(𝜃) − 𝑐(𝜙)𝑠(𝜓)]𝑣 + [𝑠(𝜙)𝑠(𝜓) + 𝑐(𝜙)𝑐(𝜓)𝑠(𝜃)]𝜔

�̇� = 𝑟𝑣 − 𝑞𝜔 − 𝑔𝑠(𝜃) +
𝑓𝑤𝑥
𝑚
                                                                                                    

 (2. 𝑎)

{

�̇� = 𝑐(𝜃)𝑠(𝜓)𝑢 + [𝑐(𝜙)𝑠(𝜓) + 𝑠(𝜙)𝑠(𝜓)𝑠(𝜃)]𝑣 + [𝑐(𝜙)𝑠(𝜓)𝑠(𝜃) − 𝑐(𝜓)𝑠(𝜙)]𝜔

�̇� = −𝑟𝑢 + 𝑝𝜔 + 𝑔𝑠(𝜙)𝑐(𝜃) +
𝑓𝑤𝑦

𝑚
                                                                                        

 (2. 𝑏)

{
�̇� = −𝑠(𝜃)𝑢 + 𝑐(𝜃)𝑠(𝜙)𝑣 + 𝑐(𝜙)𝑐(𝜃)𝜔

�̇� = 𝑞𝑢 − 𝑝𝑣 + 𝑔𝑐(𝜃)𝑐(𝜙) +
𝑓𝑤𝑧 − 𝑓𝑡
𝑚

  
                                                                                 (2. 𝑐)

{

�̇� = 𝑝 + 𝑠(𝜙)𝑡(𝜃)𝑞 + 𝑐(𝜙)𝑡(𝜃)𝑟

�̇� =
𝐼𝑦 − 𝐼𝑧

𝐼𝑥
𝑟𝑞 +

𝜏𝑥 + 𝜏𝑤𝑥
𝐼𝑥

             
                                                                                              (2. 𝑑)

{

�̇� = 𝑐(𝜙)𝑞 − 𝑠(𝜙)𝑟     

�̇� =
𝐼𝑧 − 𝐼𝑥
𝐼𝑦

𝑝𝑟 +
𝜏𝑦 + 𝜏𝑤𝑦

𝐼𝑦

                                                                                                             (2. 𝑒)

{
 
 

 
 �̇� =

𝑠(𝜙)

𝑐(𝜃)
𝑞 +

𝑐(𝜃)

𝑐(𝜙)
𝑟    

�̇� =
𝐼𝑥 − 𝐼𝑦

𝐼𝑧
𝑝𝑞 +

𝜏𝑧 + 𝜏𝑤𝑧
𝐼𝑧

                                                                                                            (2. 𝑓)

 

where 𝑐( ) ≡ cos( ) , 𝑠( ) ≡ sin( ), and 𝑡( ) ≡ tan( ) . 
 

3. PROBLEM STATEMENT  

 The mathematical model given by (2) represents a quadcopter which is exposed to different 

uncertainties in its parameters such as its mass (𝑚) or moments of inertia (𝐼𝑥, 𝐼𝑦, 𝐼𝑧), and different  

exogenous disturbances, for example, the air or collision with another body. Our problem is to 

design the control law ν = [𝑓𝑡 𝜏𝑥 𝜏𝑦 𝜏𝑧] which has to be generated in such a way that achieves 

stabilization for the quadrotor 6-DOF nonlinear UAV plant, abolish different exogenous 

disturbances D(t) =[𝑓𝑤𝑥 𝑓𝑤𝑦 𝑓𝑤𝑧 𝜏𝑤𝑥 𝜏𝑤𝑦 𝜏𝑤𝑧] and uncertainties that the quadcopter plant exhibits, 

and minimize the multi-objective OPI that reflects the optimal time-domain requirements and 

minimal control energy consumption for trajectory tracking and altitude and attitude positioning. 

 

4. Improved Active Disturbance Rejection Control (IADRC) DESIGN  

ADRC, in general, is a combination of a nonlinear controller (e.g., SEF), and the signal profile 

generator (e.g., TD), and state and total disturbance observer (e.g., LESO). Each one of these 
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components has its features as listed below. The structure of the general IADRC is shown in Fig. 

2. In this paper, four second-order IADRC units for the 6-DoF quadrotor system will be designed, 

one for the altitude (𝑧) subsystem, and three units for the attitude (𝜙, 𝜃, and 𝜓) subsystems. The 

LESO of IADRC unit estimates the states up to the relative degree (𝜌) of each subsystem and is 

equal to two for the quadrotor subsystems. 

 

  
Figure 2. IADRC structure. 

 

The main three units of the proposed IADRC of Fig. 2 are: 

 

1. An Improved Tracking Differentiator (ITD) 

 

It is referred to as the signal profile generator in Fig. 2 and designed to deal with transitioning and 

reproduce the reference signal and its derivative. The ITD is proposed as, 

 

 {

�̇�1 = 𝕣2, 𝕣1(0) = 𝕣10                                                    

�̇�2 = −𝑎 (
𝑒𝑥𝑝 (

𝑚

𝛾
)−𝑒𝑥𝑝 (−

𝑚

𝛾
)

𝑒𝑥𝑝 (
𝑚

𝛾
)+𝑒𝑥𝑝 (−

𝑚

𝛾
)
) + 𝑏𝕣2, 𝕣1(0) = 𝕣20     

                     (3) 

 

where 𝑚 = 𝛽𝕣1 − (1 − 𝛼)𝕣, 𝑎 = 𝑅2, b=−𝑅, 𝕣1 is the output signal which tracks the reference 

signal 𝕣, 𝕣2 tracks �̇�, the differentiated signal of 𝕣. The parameters 𝑅, 𝛽, 𝛼, and 𝛾 are design 

parameters, and they are optimized to give the best tracking results. 

 

2. Linear Extended State Observer (LESO) 

 

It is designed to estimate and observe the disturbances and uncertainties. Also, it is called the state 

and total disturbance observer in Fig. 2. The LESO equations used in the design are proposed as 

in (4), 

 

{

�̇�1 = 𝑧2 + 𝛽1𝑒             
�̇�2 = 𝑧3 + 𝛽2𝑒 + 𝑏𝑜𝑈
�̇�3 = 𝛽3𝑒                      

                           (4) 

where 𝑒 = (𝑦 − 𝑧1), 𝛽1 = 3𝜔𝑜  , 𝛽2 = 3𝜔𝑜
2  , 𝛽3 = 𝜔𝑜

3, 𝜔𝑜 is the bandwidth of the observer and 

should be optimized to give minimum estimation error, 𝑧1, 𝑧2 are the estimated states of the 

nonlinear system, while 𝑧3 is the estimated total disturbance which represents the unwanted 

dynamics, uncertainties and exogenous disturbances. 
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3. Improved State Error Feedback (ISEF) 

Also, it is denoted as the nonlinear controller as in Fig. 2. After estimating the total disturbance 𝑧3 

by the LESO, the ISEF minimizes the error and gives better performance for the system. A 

modified version of the NLPID controller is adopted by neglecting the integrator part, the new 

controller will be a NonLinear Proportional Derivative (NLPD) controller. The idea of ignoring 

the integrator part originates from the fact that the LESO will estimate all the uncertainties and 

exogenous disturbances and any other discrepancies in the system and eliminate them from the 

nonlinear system by subtracting these estimated unwanted signals from the input channel is a real-

time behavior. The result is a linearized system with a chain of integrators up to nonlinear system’ 

relative degree (𝜌), and the integrator action is already included in the system.  The suggested 

NLPD controller  is constructed as 

 

{
𝑢𝑁𝐿𝑃𝐷 = 𝑔1(𝑒) + 𝑔2(�̇�)                                                                                

𝑔𝑖(𝜖) = (𝑘𝑖1𝜖|𝜖|
𝛼𝑖−1(1 + 𝑒𝑥𝑝(𝜇𝑖𝜖

2) + 𝑘𝑖2𝜖|𝜖|
𝛼𝑖−1) 𝑝(𝜖), 𝑖 ∈ {1,2}

                        (5) 

 

where 𝑝(𝜖) = 1 (1 + 𝑒𝑥𝑝(𝜇𝑖𝜖
2))⁄ , 𝜖 could be one of 𝑒 or �̇�.  The net control signal that actuates 

the nonlinear system after subtracting the total disturbance from the input channel is given as, 

 

𝑈 = 𝑢𝑁𝐿𝑃𝐷 −
𝑧3

𝑏𝑜
                 (6) 

 

The quadrotor system is a multi-loop system as shown in Fig. 3. The position (x, y) controllers are 

simply NLPID controllers without ADRC compensation because there are no real control signals 

in their model equations. In this paper, our interest will be the altitude (𝑧) and attitude (𝜙, 𝜃, and 𝜓) 

systems. 

 

 

Figure 3. Quadrotor System with IADRC configuration. 

5. QUADROTOR SYSTEM STABILITY ANALYSIS 
 The overall closed-loop stability analysis for the translational (altitude (𝒛)) and rotational (attitude 
(𝝓,𝜽,𝝍)) subsystems with the IADRCs is proved in this section by using Hurwitz stability 
theorem. As can be seen from the systems’ equations stated in (2) they cannot be represented by a 
chain of integrators, so a transformation is derived below and used to accommodate the 
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nonlinearities of the 6-DoF quadrotor subsystems where the nonlinearities appear in a different 
channel of the control signal.  On the other hand, the exogenous disturbance acts on the same 
channel of the control signals for these four quadrotor subsystems (matched disturbance case). 
Each of the four systems (𝒛,𝝓, 𝜽, and 𝝍) can be represented by  
 

   {
𝜁1̇ = 𝐹1(𝜁)                        

𝜁2̇ = 𝐹2(𝜁) + 𝑏1𝑈 + 𝑏2𝑑
Γ = 𝜁1                                

                                          (7) 

 

where 𝜁 is the states of the quadrotor system, 𝑏1, 𝑏2 are constants coefficients, 𝐹1, 𝐹2 are nonlinear 

functions, 𝑈 is the control signal for this subsystem, 𝑑 is the exogenous disturbance. Finally, 𝛤 is 

the output of the system. By differentiating the first equation of (7) w.r.t 𝑡, one gets, 

 

𝜁1̈ =
𝜕𝐹1(𝜁)

𝜕𝜁1
𝜁1̇ +

𝜕𝐹1(𝜁)

𝜕𝜁2
𝜁2̇                           (8) 

 

Substitute equations (7) in equation (8) one gets, 

 

𝜁1̈ =
𝜕𝐹1(𝜁)

𝜕𝜁1
𝐹1(𝜁) +

𝜕𝐹1(𝜁)

𝜕𝜁2
(𝐹2(𝜁) + 𝑏1𝑈 + 𝑏2𝑑)                  (9) 

 

Simplifying (9), results in, 

 

𝜁1̈ = 𝐹𝑡𝑜𝑡𝑎𝑙(𝜁) + 𝑏1
𝜕𝐹1(𝜁)

𝜕𝜁2
𝑈 + 𝑏2

𝜕𝐹1(𝜁)

𝜕𝜁2
𝑑                                 (10) 

 

where 𝐹𝑡𝑜𝑡𝑎𝑙 =
𝜕𝐹1(𝜁)

𝜕𝜁1
𝐹1(𝜁) +

𝜕𝐹1(𝜁)

𝜕𝜁2
𝐹2(𝜁). Letting �̃�1 = 𝑏1

𝜕𝐹1(𝜁)

𝜕𝜁2
, �̃�2 = 𝑏2

𝜕𝐹1(𝜁)

𝜕𝜁2
, then, 

 

𝜁1̈ = 𝐹𝑡𝑜𝑡𝑎𝑙 + �̃�1𝑈 + �̃�2𝑑                          (11) 

 

Let 𝜁1 = 𝜁1 and 𝜁2 = 𝜁1̇, then, 

{

𝜁1
̇ = 𝜁2                                                          

𝜁2
̇ = 𝐹𝑡𝑜𝑡𝑎𝑙 + �̃�1𝑈 + �̃�2𝑑 + 𝑏𝑜𝑈 − 𝑏𝑜𝑈

Γ = 𝜁1                                                          

                                                (12) 

where 𝑏𝑜 is an approximation to �̃�1within ±50% (Han, 2009). As can be seen from (12) that the 

nonlinearities have been moved into the same channel of the control signal. Furthermore, letting 

 

𝜁3 = 𝐿 = 𝐹𝑡𝑜𝑡𝑎𝑙 + �̃�2𝑑 + (�̃�1 − 𝑏𝑜)𝑈 + �̃�2𝑑             (13) 

be the “total disturbance” and substituting in (12), yields, 

 

{
 
 

 
 𝜁1

̇ = 𝜁2     

𝜁2
̇ = 𝜁3 + 𝑏𝑜𝑈

𝜁3
̇ = �̇�      

Γ = 𝜁1      

                             (14) 
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The above representation of (14) is called Brunovsky form (BF). 

 

Assumption (A1). The total disturbance fulfills the following, 

 

1. 
𝑠𝑢𝑝  𝐿(𝑡) ≤ 𝑀1.        
0≤ t  ≤∞                   

  

2. 
𝑠𝑢𝑝  �̇�(𝑡) ≤ 𝑀2.        

0≤ t ≤∞                   
   

3. lim
𝑡→∞

𝐿(𝑡)= 𝑁 

4. lim
𝑡→∞

�̇�(𝑡)= lim
𝑡→∞

𝑑�̃�3

𝑑𝑡
= 0 

where 𝑀1, 𝑀2, and 𝑁 are positive constants. 

 

Theorem 1. Given any of the nonlinear 6-DoF quadrotor subsystems (2.a-2.f) represented in 

Brunovsky Form as a chain of integrators given in (14) and the LESO described by (4). If 

assumption A1 holds, then the LESO converges asymptotically to the 6-DoF quadrotor subsystems 

(2.a-2.f) expressed in (13). Moreover, the estimation errors 𝑒𝑗 = (𝜁𝑗 − 𝑧𝑗), 𝑗 ∈ {1,2,3} approach 

zero if the LESO coefficients 𝛽𝑗, 𝑗 ∈ {1,2,3} are chosen such that the polynomial 𝑠3 + 𝛽1𝑠
2 +

𝛽2𝑠 + 𝛽3 is Hurwitz stable. 

 

Proof: The error dynamics of the LESO 𝑒𝑖 can be found by the following equations 

 

{

𝑒1 = 𝜁1 − 𝑧1
𝑒2 = 𝜁2 − 𝑧2
𝑒3 = 𝜁3 − 𝑧3

                                 (15) 

 

By substituting (4) and (14) in the derivative of (15), results in, 

{

𝑒1̇ = 𝜁2 − 𝑧2 − 𝛽1𝑒1                          

𝑒2̇ = 𝜁3 + 𝑏𝑜𝑈 − 𝑧3 − 𝛽2𝑒1 − 𝑏𝑜𝑈

𝑒3̇ = �̇� − 𝛽3𝑒1                                    

                         (16) 

and is expressed in another form as, 

 {

𝑒1̇ = 𝑒2 − 𝛽1𝑒1
𝑒2̇ = 𝑒3 − 𝛽2𝑒1
𝑒3̇ = �̇� − 𝛽3𝑒1

                            (17) 

 

In matrix form, the dynamics of (17) can be written as, 

 

�̇� = 𝐴𝑆 𝒆 + 𝐴𝑇�̇�                           (18) 

 

where 

𝐴𝑆 = [

−𝛽1 1 0
−𝛽2 0 0
−𝛽3 0 0

] , 𝐴𝑇 = [
0
0
1
]  , 𝒆 = [

𝑒1
𝑒2
𝑒3
] 
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If condition (4) in Assumption A1 satisfied, then, the second term will vanish. The matrix 𝐴𝑆  with 

the characteristic equation 𝜆3 + 𝛽1𝜆
2 + 𝜆𝛽2 + 𝛽3 is Hurwitz stable if the coefficients 𝛽𝑗 , 𝑗 ∈

{1,2,3} satisfy the conditions of the Routh-Hurwitz Criterion conditions, i.e., 𝛽1, 𝛽2, 𝛽3 > 0 and 

𝛽1 𝛽2 > 𝛽3. Hence, the system of (18) is asymptotically stable and the errors 𝑒𝑗 , 𝑗 ∈ {1,2,3} decay 

zero and the LESO approaches asymptotically to (14). 

                              

   

Assumption (A2). The ITD of (3) tracks a reference signal 𝑟 with a very small error and with  

 

𝕣(2) = 0, i.e.,  lim
𝑡
 
→∞
(𝕣(𝑖−1) − 𝕣𝑖) = 0, 𝑖 ∈ {1,2}. 

Assumption (A3). The LESO of (4) perfectly estimates the states of the nonlinear system, i.e., 

 

lim
𝑡
 
→∞

𝑒𝑖 = 0, 𝑖 = 1,2,3 

 

Assumption (A4). The values of 𝛼𝑖 of the NLPD controller (5) are approximately set to unity, i.e., 

 

𝛼1 ≈ 𝛼2 ≈ 1 

 

which makes the mathematical relation of 𝑔𝑖(𝜖) in (5) expressed as, 

 

             𝑔𝑖(𝜖) = (𝑘𝑖1(1 + 𝑒𝑥𝑝(𝜇𝑖𝜖
2) + 𝑘𝑖2) 𝜖 𝑝(𝜖) = �̀�𝑖(𝜖) 𝜖     

 

where ϵ could be one of e or ė, �̀�𝑖(𝜖) = (𝑘𝑖1(1 + exp(μiϵ
2) + 𝑘𝑖2)𝑝(𝜖), 𝑖 ∈ {1,2}, which is a 

sector bounded positive function, i.e., 𝑔𝑖(𝜖) ∈ [𝑘𝑖1, 𝑘𝑖1 + 𝑘𝑖2/2]. 
 

Theorem 2. Given any of the nonlinear 6-DoF quadrotor subsystems (2.a-2.f) represented in 

Brunovsky form as in (14) and the IADRC which consists of the ITD, LESO, and ISEF (i.e., 

NLPD) described in (3), (4), and (5) respectively. Knowing that Assumptions A1, A2, A3, and A4 

hold, then, the closed-loop system is asymptotically Hurwitz stable provided that the nonlinear 

gains �̀�𝑖(�̃�𝑖), 𝑖 ∈ {1,2} are chosen such that the characteristic equation 𝑠2 + �̀�2(𝜖)𝑠 + �̀�1(𝜖) is 

Hurwitz stable. 

 

Proof: The closed-loop error dynamics of the system (14) are written as 

 

{
�̃�1 = 𝕣 − 𝑧1
�̃�2 = �̇� − 𝑧2

 

 

After convergence of the LESO and assume that the assumption A3 holds, then, the closed-loop 

error dynamics of the system can be found as 

 

 {
�̃�1 = 𝕣 − 𝜁1
�̃�2 = �̇� − 𝜁2

                     (19) 

 

Differentiating both side yields, 
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 {
�̃�1̇ = �̇� − 𝜁1

̇

�̃�2̇ = �̈� − 𝜁2
̇
                      (20) 

 

For the system of (14), the states 𝜁𝑖 , 𝑖 ∈ {1,2} can be expressed in terms of the nonlinear output, 

𝜁𝑖 = 𝑦
(𝑖−1), 𝑖 ∈ {1,2}. If assumptions A2 holds, then, the error dynamics of (20) will be given as 

 

{
�̃�1̇ = �̃�2                

�̃�2̇ = −𝑧2 − 𝑏0𝑈
                               (21) 

 

With 𝑈 = 𝑢𝑁𝐿𝑃𝐷 −
𝑧3

𝑏𝑜
  

 

{
�̃�1̇ = �̃�2                             

�̃��̇� = −𝑧3 − 𝑢𝑁𝐿𝑃𝐷 + 𝑧3
                       (22) 

 

Canceling 𝑧3 results in 

 

{
�̃�1̇ = �̃�2           

�̃��̇� = −𝑢𝑁𝐿𝑃𝐷
                           (23) 

 

By substituting 𝑢𝑁𝐿𝑃𝐷 in (5), yields, 

 

{
�̃�1̇ = �̃�2                                  

�̃��̇� = −[𝑔1(𝑒1) + 𝑔2(𝑒2)] 
                           (24) 

 

If assumption A4 is valid, then,  

 

{
�̃�1̇ = �̃�2                                      

�̃��̇� = −�̀�1(𝑒1)𝑒1 − �̀�2(𝑒2)𝑒2 
                            (25) 

 

In matrix form, 

 

�̇̃� = 𝐴𝐶�̃�                            (26) 

 

where 𝐴𝐶 is given as 

 

𝐴𝐶 = [
0 1

−�̀�1(𝑒1) −�̀�2(𝑒2)
] 

 

With the characteristic equation 𝑠2 + �̀�2(𝑒2)𝑠 + �̀�1𝑒1. The Hurwitz matric 𝐻𝑜 for 𝐴𝐶 is given as 

 

𝐻𝑜 = [
�̀�2(𝑒2) 0

1 �̀�1(𝑒1)
]                            (27) 

 

From (27), it can easily derive the conditions for Hurwitz stability, 
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|�̀�2(𝑒2)| = �̀�2(𝑒2) > 0 & �̀�2(𝑒2)�̀�1(𝑒1) > 0 

 

The above conditions are already satisfied since �̀�2(𝑒2) and 𝑔̀ 1(𝑒1) are sector bounded positive 

functions, 𝑔𝑖(𝜖) ∈ [𝑘𝑖1, 𝑘𝑖1 + 𝑘𝑖2/2], 𝑖 ∈ {1,2} which proves the theorem.    

                     
 

6. SIMULATION AND RESULTS   
 

The quadrotor model with the IADRC is implemented using MATLAB/Simulink environment 

with sampling time T = 0.01 sec, and all the results are discussed in parallel with that of the LPID 

and NLPID controllers. The 6-DoF quadrotor system parameters used in the simulation 

environment are given in the appendix. The optimum values of the IADRC unit’s parameters are 

obtained via the minimization problem of the multi-objective OPI index using Genetic Algorithm 

(GA) optimization as illustrated below, 

 

𝑂𝑃𝐼 = ∑ 𝛾𝑗 × [𝛾1𝑗 × 𝑈𝐴𝐵𝑆 + 𝛾2𝑗 × 𝑈𝑆𝑄𝑅 + 𝛾3𝑗 × 𝐼𝑇𝐴𝐸]𝑗            (28) 

 

for 𝑗 = 𝑧, 𝜃, 𝜙, 𝜓 where 𝐼𝑇𝐴𝐸 is the Integrated Time Absolute error given as,∫ 𝑡|�̃�|𝑑𝑡
𝑡𝑓
0

, 𝑈𝑆𝑄𝑅 is 

the Control Signal Energy,  ∫ |𝑢𝑁𝐿𝑃𝐷(𝑡)|
2𝑑𝑡

𝑡𝑓
0

, and 𝑈𝐴𝐵𝑆 is the Integrated absolute control signal 

expressed as, ∫ |𝑢𝑁𝐿𝑃𝐷(𝑡)|𝑑𝑡
𝑡𝑓
0

, where 𝑡𝑓 is the time interval of the simulation, 𝛾1𝑗, 𝛾2𝑗, and 𝛾3𝑗 

are weighting parameters defined as the relative importance of one objective as compared to the 

other. They must satisfy 𝛾1𝑗+ +𝛾2𝑗 + 𝛾3𝑗 = 1. The same applies for 𝛾𝑗 with a relative importance 

of one subsystem as compared to other subsystems. All the IADRCs parameters are shown in 

Tables (1-4).  It is worth to mention that the tuning processing is achieved in an off-line manner, 

i.e., all the parameters of all three IADRC units are tuned using GA according to (28) firstly, then, 

they are kept constant during the simulation period. Any discrepancies, uncertainties, and 

exogenous disturbances that the 6-DoF UAV system may exhibit will, in turn, be accounted for by 

the LESO, which will estimate all these unwanted factors and cancel them from the input channel 

in an online manner. Moreover, the sampling time used to calculate 

 

Table 1. ESOs parameters 

parameter 
𝑧 

subsystem 

𝜙 
subsystem 

𝜃 
subsystem 

𝜓 
subsystem 

ωo 300 861.36 671.76 749.05 

𝑏o 0.5 0.004 0.005 0.004 

 

Table 2. ITDs parameters 

parameters 
𝑧, 𝜙, 𝜃, 𝜓 

subsystems 
𝛼 0.978 

𝛽 2.793 

𝛾 16.772 

𝑅 26.50 
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Table 3. ISEF parameters 

parameter 
𝑧 

subsystem 

𝜙 
subsystem 

𝜃 
subsystem 

𝜓 
subsystem 

𝑘11 32.480 5.639 5.108 0.699 

𝑘12 11.436 0.076 0.039 0.210 

𝑘21 9.075 0.749 0.066 0.241 

𝑘22 0.141 0.047 0.066 0.102 

𝜇1 0.281 0.076 0.519 0.127 

𝜇2 0.423 0.599 0.774 0.376 

𝛼1 0.968 0.959 0.957 0.974 

𝛼2 0.958 0.954 1.003 0.941 

 

Table 4. PID controllers’ parameters 

 

 

parameter 
𝑧  

subsystem 
𝜙 

subsystem 

𝜃 
subsystem 

𝜓 
subsystem 

𝑘𝑃 67.599 1.090 1.280 1.406 

𝑘𝐷 11.718 0.068 0.110 0.230 

𝑘𝐼 76.339 0.560 0.803 1.424 
 

 

6.1 Study Case One (Tracking) 

The first test is to check the effectiveness of the IADRC for the 6-DoF quadrotor system to track 

time-varying reference signals. For each of the four subsystems, the following reference input has 

been applied while a constant step reference input is imposed for the rest three subsystems, 

𝕣 = 𝑢(𝑡 − 1) + 5𝑢(𝑡 − 10) + 10𝑢(𝑡 − 25) − 7𝑢(𝑡 − 35) − 8𝑢(𝑡 − 40)                        (29) 

 

 Figs. 4-7 show the time response for the altitude subsystem 𝑧, and the attitude subsystems 

(𝜙, 𝜃, 𝜓). The closed-loop errors occurred for all the states are always very small and reach zero 

after very a short time even the steps given at different times and different values. 
 

 
Figure 4. Altitude time response with the time-varying reference input. 
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Figure 5.  Roll time response with the time-varying reference input. 

 

Figure 6. Pitch time response with the time-varying reference input. 

 

Figure 7. Yaw time response with the time-varying reference input. 

6.2 Study Case two (Disturbance Rejection) 

Disturbance rejection was the last test demonstrated with the IADRC configuration on the 6-DoF 

quadrotor system was to ensure stable and accurate tracking in the presence of exogenous 

disturbances. This test has been achieved by applying several disturbances at different times on 

the attitude(𝜙, 𝜃, 𝜓)subsystems. The disturbances values applied are [0.5,0.5,0.5]  𝑁.𝑚 at 

[10,25,35] 𝑠𝑒𝑐 respectively and the time responses of the attitude states are shown in Figs. 8-10. 

The output response is deteriorated using LPID and NLPID controllers with large overshoots of 

more than 200% of the steady-state response, while the IADRC rejected the disturbances very 

quick and with very small peak values. 
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Figure 8. Roll time response with disturbances. 

 

Figure 9. Pitch time response with disturbances. 

 

Figure 10. Yaw time response with disturbances. 

 

6.3 Study Case three (Uncertainties Rejection) 
 

The third test was chosen to observe the effect of the uncertainties of the parameters on the output 

response of the 6-DoF quadrotor systems using the IADRC scheme. One of the settings that could 

face a significant change in its value is the mass m of the quadrotor. Fig. 11 shows the response 

of the altitude (𝑧) with an uncertainty of ∆𝑚= +100% in the quadrotor mass occurred at t = 25 

sec of the simulation time. As can be seen from Fig. 11, the ADRC tackled this uncertainty in the 

mass with a very small error, with less than 2% of the steady-state response. The other controllers 

used in the comparison exhibited high peaks and took a long time to get rid of the uncertainty 

effect. 
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     Figure 11. Altitude with uncertainty in the mass. 

 

6.4 Study Case four (Decoupling) 

The second test was to prove that the attitude subsystems are totally decoupled using the IADRC 

configuration. It is accomplished by applying a step reference input of 45𝑜 at t = 5 sec, while the 

other two subsystems have a constant step reference input of 10𝑜. It is very clear from Fig. 12 that 

the ADRCs perfectly decoupled the states while the NLPID and the LPID could not do that and a 

peak overshoot happens in one or more of the attitude states whenever there is a sudden change in 

the reference signals of the other subsystems. On the other hand, the IADRC gave a smooth and 

fast response without any interactions between different subsystems of the 6-DoF quadrotor 

systems. 
 

 

Figure 12. Attitude states decoupling. 
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6.5 Discussion 

The effectiveness of the IADRC to achieve accurate tracking, decoupling and cancellation of the 

parameter uncertainties is due to the capability of the IADRC to consider these couplings between 

different quadrotor subsystems and system parameter variations as part of the total disturbance 

which is estimated and fed into the input channel for cancellation by the LESO. Moreover, the 

LESO ability to correctly predict the exogenous disturbance and canceling them from the nonlinear 

system’s input channel very quickly in a real-time manner is the principal justification for excellent 

reference tracking in the existence of the external disturbances. Finally, the LPID and NLPID 

controllers failed to achieve this task. 

 

7. CONCLUSIONS 

This work presented an IADRC for the stabilization and trajectory tracking control design for an 

under-actuated 6-DoF quadrotor UAV system. From the results, one can conclude that the IADRC 

has shown an excellent reference tracking and exogenous disturbance and uncertainties rejection 

with minimum ITAE, USQR, and UABS time-domain indices. Furthermore, the IADRC removed 

quadrotor subsystems interactions and converted these subsystems into simple double integrator 

subsystems, which positively improved the reference tracking and removed the steady-state errors. 

The Comparison with LPID and NLPID controllers demonstrated the validation and powerfulness 

of the proposed control scheme when applied on highly nonlinear and strongly coupled MIMO 

system such as 6-DoF quadrotor UAV system. 

 

Appendix A 

Table A. 6-DoF UAV parameters. 

Param

eter 

description value 

𝐼𝑥 Moment of inertia of the x- subsystem 8.553 ∗ 10−3kg.m2 

𝐼𝑦 Moment of inertia of the y- subsystem 8.553 ∗ 10−3 kg.m2 

𝐼𝑧 Moment of inertia of the z-subsystem 1.476 ∗ 10−2 kg.m2 

𝑔 Gravitational acceleration 9.81m/sec2 

𝑚 Mass  0.964kg 

𝑏 Thrust coefficient 7.66 ∗ 10−5N. sec2 

𝑑 Drag coefficient 5.63 ∗ 10−6N.m. sec2 

𝑙 Distance from center to motor 0.22 meter 
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