

Journal of Engineering journal homepage: <u>www.joe.uobaghdad.edu.iq</u> Number 2 Volume 26 February 2020

Electrical, Electronics and communications, and Computer Engineering

Dynamic Response Assessment of the Nigerian 330kV Transmission System

Ignatius Kema Okakwu

Department of Electrical and Electronics Engineering, University of Benin, Benin City, Nigeria

Olubayo Moses Babatunde

Department of Electrical and Electronics Engineering, University of Lagos, Akoka, Nigeria Akintunde Samson Alayande

Department of Electrical and Electronics Engineering, University of Lagos, Akoka, Nigeria

Ade-Ikuesan Olanike Olufisayo

Department of Electrical and Electronics Engineering, Olabisi Onabanjo University, Ago-Iwoye, Nigeria

Olabode Olakunle Elija

Department of Electrical and Electronics Engineering, Ladoke Akintola University of Technology, Ogbomoso, Nigeria

ABSTRACT

This paper presents the dynamic responses of generators in a multi-machine power system. The fundamental swing equations for a multi-machine stability analysis are revisited. The swing equations are solved to investigate the influence of a three-phase fault on the network largest load bus. The Nigerian 330kV transmission network was used as a test case for the study. The time domain simulation approach was explored to determine if the system could withstand a 3-phase fault. The stability of the transmission network is estimated considering the dynamic behaviour of the system under various contingency conditions. This study identifies Egbin, Benin, Olorunsogo, Akangba, Sakete, Omotosho and Oshogbo as the key buses within the network, which could provide useful information when a three-phase fault occurs on Ikeja-West (Bus with the largest load). The results obtained also show that the system loses synchronism immediately a three-phase fault was simulated on the largest load bus, considering various contingencies with the generator at Geregu being the most severely disturbed generator.

Key Words: Transient stability, Critical clearing time, Nigerian 330kV transmission network, Swing equation, Disturbances, Dynamic responses.

*Corresponding author

Peer review under the responsibility of University of Baghdad.

https://doi.org/10.31026/j.eng.2020.02.07

2520-3339 © 2019 University of Baghdad. Production and hosting by Journal of Engineering.

This is an open access article under the CC BY4 license <u>http://creativecommons.org/licenses/by /4.0/).</u> Article received:28/4/2019 Article accepted:18/11/2019

Article published: 1/2/2020

1. INTRODUCTION

The quest for providing a reliable and uninterruptible power supply to loads have resulted in the complexity of power system networks. Consequently, this increase in complexity of power network increases fault current and may lead to system instability if not properly managed and quickly controlled (**Phadke, et al., 2016**). One of the possible ways to avert system instability or to maintain the integrity of a power system network is to keep the synchronous generators in synchronism (**Fetissi, et al., 2015**). There is therefore the need to assess the dynamic responses of the generators in the event of a disturbance or fault. Transient stability assessment study is used in describing the dynamic responses of a synchronous generator in a power system network (**Xia, et al., 2018**). Transient stability refers to the ability of the network to remain stable even when subjected to a large disturbance such as $3-\phi$ fault, sudden removal or addition of network elements such as loads or transmission line (**Gajduk, et al., 2014**).

One of the important derivatives of transient stability is Critical Clearing Time (CCT), which is a very significant factor for maintaining stability of a power network. CCT is defined as the highest allowable time limit that a fault must be cleared; hence, the system will lose synchronism (**Ayodele, et al., 2016**). The value of CCT of a power system network is obtained by gradual increase in fault clearing time, until the system loses its stability. Recent literatures have shown that the Nigerian 330kV transmission network is faced with various degrees of instability due to its structural characteristics (**Shereefdeen, et al., 2016; Oluseyi, et al., 2017**). The recovery of the Nigerian 330kV transmission network has been subjected to large disturbance, which has been a major problem to the System operators and Planners. This study, therefore aims at assessing the dynamic responses of the Nigerian 330kV transmission network by simulating a 3-Phase fault on the bus with the largest load at Ikeja-West.

2. STUDY SYSTEM

In this paper, the single-line diagram of the Nigerian 330kV transmission network used as the test system is as shown in **Fig.1.** It comprises of eleven (11) generators, thirty-six (36) transmission lines and twenty-one (21) load buses. The swing generator is the largest generator (Egbin) and the fault location is the bus with the Largest load (Ikeja-West). From **Fig.1**, there are seven (7) lines that could cause disturbance on the largest bus this includes Ikeja West-Egbin, Ikeja West-Benin, Ikeja West-Akangba, Ikeja West-Sakete, Ikeja West-Olorunsogo GS, Ikeja West-Omotosho and Ikeja West-Oshogbo.

Figure 1. Single-line diagram of the Nigerian 330kV transmission system.

Table 1.	Generation	Parameters.
----------	------------	-------------

Bus No	Bus Name	Pmax (MW)	Qmax (MW)	Qmin (MW)
1	Egbin G.S	Slack Bus	Slack Bus	Slack Bus
7	Olorunshogo G.S	335	184	-120
8	Omotosho G.S	335	184	-120
11	Shiroro G.S	600	316	-60
13	Jebba G.S	590	284.4	-180
15	Kainji G.S	760	246.8	-240
23	Geregu G.S	414	255	-135
27	Sapele G.S	960	523	-300
28	Delta G.S	900	504	-288
29	Okpai G.S	480	238.8	-150
30	Afam G.S	681	648	-390

		Maximum Load Demand		Minimum Load Demand	
Bus No	Bus Name	MW	Mvar	MW	Mvar
2	Benin	298	144(+75)	188	91
3	Ikeja West	510	246(+75)	321	155
4	Akangba	471	228	297	144
5	Sakete	145	70	91	44
6	Aiyede	270	130	170	82
9	Oshogbo	235	114(+75)	148	72
10	Ganmo	270	130	170	82
12	Jebba T.S	412	199(+150)	260	125
14	Birnin Kebbi	112	54(+30)	71	34
16	Kano	250	121(+75)	157	76
17	Kaduna	275	133(+75)	173	84
18	Jos	141	68	89	43
19	Gombe	180	87(+100)	113	55
20	Yola	112	54	71	34
21	Katampe	300	127	189	62
22	Ajaokuta	96	46	60	29
24	Onitsha	162	76	102	48
25	Alaoji	266	124	167	78
26	New Haven	235	110	148	69
31	Aja	220	103	139	65
32	Aladja	167	81	105	51

Table 2. Load Bus Parameters.

 Table 3. Parameters of Transmission Line.

S/N	Transmission	line	Length	Impedance		Shunt Admittance
	From Bus	To Bus	(km)	Resistance (p.u)	Inductance (p.u)	Admittance 1/2 B (p.u)
L1	1	3	62.00	0.001122	0.008630	0.064350
L2	1	31	14.00	0.000253	0.001950	0.014530
L3	2	3	280.00	0.005070	0.038953	0.290590
L4	2	8	51.00	0.001830	0.015501	0.096920
L5	2	9	251.00	0.008990	0.076291	0.476980
L6	2	22	195.00	0.003490	0.029640	0.185280
L7	2	24	137.00	0.002450	0.020820	0.130171
L8	2	27	50.00	0.000910	0.006960	0.051900

L9	2	28	41.00	0.001470	0.012462	0.077913
L10	3	4	17.00	0.000304	0.002584	0.016053
L11	3	5	70.00	0.002510	0.021280	0.133021
L12	3	7	30.00	0.001074	0.009120	0.057010
L13	3	8	200.00	0.007163	0.060790	0.380061
L14	3	9	250.00	0.008953	0.075990	0.475080
L15	6	7	60.00	0.002150	0.018240	0.114020
L16	6	9	115.00	0.004120	0.034954	0.218540
L17	9	10	75.00	0.002690	0.022800	0.142523
L18	9	12	157.00	0.002811	0.023860	0.149174
L19	10	12	80.00	0.002870	0.024320	0.152030
L20	11	12	244.00	0.004370	0.037082	0.231840
L21	11	17	96.00	0.001720	0.014590	0.091220
L22	11	21	218.00	0.003944	0.030330	0.226244
L23	12	13	8.00	0.000150	0.001113	0.008303
L24	12	15	81.00	0.001450	0.012310	0.076962
L25	14	15	310.00	0.005551	0.047112	0.589095
L26	16	17	230.00	0.004120	0.034954	0.437070
L27	17	18	196.00	0.003510	0.029790	0.372460
L28	18	19	264.00	0.004730	0.040121	0.501681
L29	19	20	240.00	0.004300	0.036474	0.456074
L30	22	23	1.00	0.000020	0.000140	0.001040
L31	24	25	138.00	0.004942	0.041945	0.262242
L32	24	26	96.00	0.003440	0.029180	0.182430
L33	24	29	60.00	0.001090	0.008350	0.062270
L34	25	30	25.00	0.000452	0.003480	0.025950
L35	27	32	63.00	0.002260	0.019150	0.119720
L36	28	32	32.00	0.001146	0.009726	0.06081

3. MATHEMATICAL MODELLING

For an *N*-bus power system with *m*-generators as shown in **Fig. 2.**

Figure 2. n-bus power network with m-generators.

There are three steps involved in assessing the transient stability of the system as follows: first, performing a pre-fault load flow study to determine initial bus voltages ($V_i = V_I, V_2..., V_n$), initial machine currents ($I_i = I_1, I_2, ..., I_m$) and initial electrical power output of machines ($P_{ei} = P_{e1}, P_{e2}, ..., P_{em}$). The angles of the voltages are then obtained with respect to the slack bus. Secondly, the swing equations for each of the machines are formulated in the power system network. The swing equation represents the dynamics of the rotor angle (δ). These equations are non-linear differential equations. Lastly, this non-linear differential equation should be solved using numerical techniques.

3.1. Mathematical Modelling of Load Flow Study

For an '*n*' bus, the net current injected into the network is written as:

$$\begin{bmatrix} I_1 \\ I_2 \\ \vdots \\ I_n \end{bmatrix} = \begin{bmatrix} Y_{11} & Y_{12} & \cdots & Y_{1n} \\ Y_{21} & Y_{22} & \cdots & Y_{2n} \\ \vdots & \vdots & & \vdots \\ Y_{n1} & Y_{n2} & \cdots & Y_{nn} \end{bmatrix} \begin{bmatrix} V_1 \\ V_2 \\ \vdots \\ V_n \end{bmatrix}$$
(1)

where I_i is the current injected into the network at bus *i*, V_i is the bus voltage at bus *i* and Y_{ij} is the bus admittance between buses *i* and *j* with the network.

The complex power injected at bus *i* is given as:

Number 2 Volume 26 February 2020

$$S = V_i I_i^*$$

$$I_i = \sum_{k=1}^n Y_{ik} V_k$$
(2)

$$= Y_{i1}V_i + Y_{i2}V_2 + \dots + Y_{in}V_n$$
(3)

Rewriting the complex power flow in equation 2 as $S^* = V_i^* I$, we obtain

$$P_{i} - jQ_{i} = V_{i}^{*} \sum_{k=1}^{n} Y_{ik} V_{k}$$
(4)

The active and reactive powers injected into each bus can be derived as:

$$P_{i} = \sum_{k=1}^{n} |V_{i}||V_{k}||Y_{ik}| \cos(\theta_{ik} - \delta_{i} + \delta_{k})$$
(5)

and

$$Q_{i} = -\sum_{k=1}^{n} |V_{i}| |V_{k}| |Y_{ik}| \sin(\theta_{ik} - \delta_{i} + \delta_{k})$$
(6)

where V_i is the voltage magnitude of bus *i*, θ_{ik} is the voltage angle between buses *i* and *k*, δ is the admittance angle.

Following the determination of P_i and Q_i , the voltage magnitude and its angle can be calculated through iterative method like Newton-Raphson method as described by equation 7.

$$\begin{bmatrix} \Delta \delta \\ \Delta |V| \end{bmatrix} = \begin{bmatrix} J_1 & J_2 \\ J_3 & J_4 \end{bmatrix}^{-1} \begin{bmatrix} \Delta P \\ \Delta Q \end{bmatrix}$$
(7)

where J_1 , J_2 , J_3 and J_4 are the elements of the Jacobian matrix of equation 7, the variables at the finish of each iterations are updated with equation (8) and (9).

$$\delta_i^{(k+1)} = \delta_i^{(k)} + \Delta \delta_i^{(k)} \tag{8}$$

$$\left|V_{i}^{(k+1)} = \left|V_{i}^{k}\right| + \Delta \left|V_{i}^{k}\right|\right| \tag{9}$$

Solution is obtained when ΔP and ΔQ are lower than the stipulation tolerance.

3.2. Mathematical modelling of Swing Equation

For a power system network with 'm' generators, the internal voltage can be determined using equation (10).

$$E_i = V_i + j x_{di} \left[\frac{P_{gi} - j Q_{gi}}{V_i^*} \right] = E_i \angle \delta_i$$
(10)

where E_i is the internal voltage of the machine, V_i is the terminal voltage, x_{di} is the impedance of the machine, P_{gi} and Q_{gi} are the real and reactive power of the machine respectively.

Loads are converted to equivalent admittance using equation (11).

$$y_{id} = \frac{P_{di} - jQ_{di}}{|V_i|^2}$$
 for $i = 1, 2, ..., m$ (11)

where P_{di} and Q_{di} are the respective equivalent real and reactive powers at each load bus. The pre-fault bus admittance matrix $[Y_{bus}]$ is formed as given in equation (12).

$$Y_{bus} = \begin{bmatrix} Y_{mm} & Y_{mn} \\ Y_{nm} & Y_{nn} \end{bmatrix}$$
(12)

where Y_{mm} is a sub matrix of dimension (m x m). It corresponds to the buses where generators are connected. Y_{mn} , Y_{nm} and Y_{nn} are other sub matrix.

Using the Kron's reduction method given by

$$Y_{ij(new)} = Y_{ij(old)} - \frac{Y_{ik(old)}Y_{kj(old)}}{Y_{kk}}$$
(13)

where node k is to be eliminated. Equation (12) can be reduced to

$$Y_{bus(reduced)} = Y_{mm} - Y_{mn} Y_{nn}^{-1} Y_{nm}$$
(14)

The electrical power output of the generator is given as

$$P_{ei} = |E_i|^2 Y_{ii} \cos \theta_{ii} + \sum_{j=1}^{m} |E_i| |E_j| |Y_{ij}| \cos(\theta_{ij} - \delta_i + \delta_j)$$
(15)

for *i*=1, 2, ..., m

The rotor dynamics is given by

$$\frac{H_i}{\pi f_0} \frac{d^2 \delta_i}{dt^2} = P_{mi} - P_{ei} \tag{16}$$

where H is the inertia constant, f_0 is the frequency and P_{mi} is the mechanical input power.

The solution of the swing equation is obtained by using a numerical solver "ODE45" in MATLAB Software.

4. RESULT AND DISCUSSION

This section presents the simulation results obtained when the network was subjected to various contingency scenarios. The fault was cleared after 5 cycle by opening the breakers of the seven lines connected to this bus (Ikeja-West), one after the other. **Fig. 3** to 9 show the dynamic responses of the generators.

Figure 3. Dynamic responses of the generators when a fault on Ikeja West bus is cleared by removing Ikeja/west-Egbin line.

Figure 4. Dynamic responses of the generators when a fault on Ikeja West bus is cleared by removing Ikeja/west-Benin line.

Figure 5. Dynamic responses of the generators when a fault on Ikeja West bus is cleared by removing Ikeja/west-Olorunsogo line.

Figure 6. Dynamic responses of the generators when a fault on Ikeja West bus is cleared by removing Ikeja/west-Akangba line.

Figure 7. Dynamic responses of the generators when a fault on Ikeja West bus is cleared by removing Ikeja/west-Sakete line.

Figure 8. Dynamic responses of the generators when a fault on Ikeja West bus is cleared by removing Ikeja/west-Omotosho line.

Figure 9. Dynamic responses of the generators when a fault on Ikeja West bus is cleared by removing Ikeja/west-Oshogbo lines.

Fig.3 shows the responses of the generators to a 3-phase fault at bus-3 with L1 removed to clear fault. The figure shows that all the generators experienced instability with Nine generators (Olorunshogo, Omotosho, Shiroro, Jebba, Kainji, Sapele, Delta, Okpai and Afam) occasioned by continues acceleration and one generator (Geregu) occasioned by continues deceleration. **Fig. 4** and 5 again depict the dynamic responses of the generators with a faulted bus-3 with L3 and L12 removed to clear fault respectively. The figures shows that five generators (Olorunshogo, Shiroro, Geregu, Jebba and Kainji) experienced instability, while the remaining five generators (Sapele, Okpai, Afam, Delta and Omotosho) remained stable. At faulted bus-3 with L10, L11, L13 and L14 removed to clear fault respectively, **Fig. 6 to 9** illustrates the dynamic responses of the generators. The figures (**Fig. 6 to 9**) indicates that only the generator (Geregu) lost synchronism by continues deceleration while others were stable. **Table 4** shows the summary of the dynamic responses of the Nigerian 330kV transmission network under a 3-phase fault at bus-3 with different lines contingencies.

Number 2

Faulted bus	Line removed to clear fault	Types of fault	Clearing time	System remark
3	L1	3-phase fault	0.1	Unstable
3	L3	3-phase fault	0.1	Unstable
3	L12	3-phase fault	0.1	Unstable
3	L10	3-phase fault	0.1	Unstable
3	L11	3-phase fault	0.1	Unstable
3	L13	3-phase fault	0.1	Unstable
3	L14	3-phase fault	0.1	Unstable

Table 4. Summary of dynamic responses of Nigerian 330kV transmission network.

Volume 26 February 2020

From the above cases, the system was unstable, irrespective of opening any breaker connecting the different transmission lines connected to the faulted bus-3. Hence the Critical Clearing Time (CCT) was unable to be determined because the system went into instability immediately the 3-phase fault was initiated. This shows that the Nigerian 330kV transmission network is on a redalert, hence, the need for urgent control measures. This assessment is in concordance with (**Ayodele, et al., 2016; Izuegbunam, et al., 2011**), results, which also identified some critical buses that could insight system instability in the Nigerian 330kV Transmission network.

5. CONCLUSIONS

In this paper, the dynamic response assessment of generators within the Nigerian 330kV Transmission Network was carried out. The system fault location was on the bus with the largest load. Several transmission lines contingency that could cause instability problem as a result of the system fault locations were considered. The simulation was done using MATLAB Software. The result reveals that the system was unstable, irrespective of any of the identified lines triggering a 3-phase on the largest load bus, with at least one generator losing synchronism. The generator at Geregu was identified as the most severely disturbed generator in the network. The study recommend that Geregu-bus should be looped with more transmission lines in order to avoid network instability caused by Geregu generator. This study will be useful to the Transmission Company of Nigeria (TCN) for effective planning of the Nigerian 330kV transmission network in order to mitigate against the problem of an already stressed network.

6. REFERENCES

- Phadke, A. G., Wall, P., Ding, L., Terzija, V., 2016, Improving the Performance of Power System Protection using wide area monitoring systems, Journal of Modern Power System and Clean Energy, Vol.4(3), PP.319-331.
- Fetissi, S., Labed, D., Labed, I., 2015, The transient stability study of a synchronous generator based on the rotor angle stability, International Journal of Electrical and Computer Engineering, Vol.5(6), PP.1319-1327.
- Xia, S., Zhang, Q., Hussain, S. T., Hong, B., Zou, W., 2018, Impacts of Integration of Wind Farms on Power System transient stability, Journal of Applied Sciences, Vol.8, PP.1-16.
- Gajduk, A., Todorovski, M., Kurths, J., Kocarev, L., 2014, Improving power grid transient stability by Plug-in electric vehicles, New Journal of Physics, Vol.16, PP.1-15.
- Ayodele, T. R., Ogunjuyigbe, A. S., Oladele, O. O., 2016, Improving the transient stability of the Nigerian 330kV transmission network using SVC Part 1: The base study, Nigerian Journal of Technology, Vol.35(1), PP.155-166.
- Shereefdeen, O. S., Josiah, O. H., Boyi, J., Usman, O. A., 2016, An analysis of transient stability enhancement capacity of UPFC in a multi-machine power system, FUOYE Journal of Engineering and Technology, Vol.1(1), PP.48-54.
- Oluseyi, P. O., Adelaja, T. S., Akinbulire, T. O., 2017, Analysis of the transient stability limit of the Nigeria 330kV Transmission Sub-Network, Nigerian Journal of Technology, Vol.36(1), PP.213-226.
- Izuegbunam, F. I., Okafor, E. N. C., Ogbogu, S. O. E., 2011, Multimachine Transient Stability Analysis of the Expanded 49 bus, 330kV Nigerian Power System, IEEE 3rd International Conference on Adaptive Science and Technology, PP.100-107.