

 Journal of Engineering

journal homepage: www.joe.uobaghdad.edu.iq

Number 6 Volume 25 June 2019

*Corresponding author

Peer review under the responsibility of University of Baghdad.

https://doi.org/10.31026/j.eng.2019.06.06

2520-3339 © 2019 University of Baghdad. Production and hosting by Journal of Engineering.

This is an open access article under the CC BY-NC license http://creativecommons.org/licenses/by-nc/4.0/).
Article received: 2/5/2018

Article accepted: 25/6/2018

 67

Electrical, Electronics and communications, and Computer Engineering

WSN-WCCS: A Wireless Sensor Network Wavelet Curve Ciphering System

 Assist. Prof. Dr. Nadia A. Shiltagh

University of Baghdad

 College of Engineering

Baghdad – Iraq

dr.nadiaat123@gmail.com

Assist. Prof. Dr. Mahmood Z. Abdullah

Mustansiriyah University

 College of Engineering

Baghdad – Iraq

drmzaali@uomustansiriyah.edu.iq

Ahmed R. Zarzoor*

Institute for Post-graduation Studies

Iraqi Commission for Computer &

informatics, Baghdad, Iraq

Ahmed.Arjabi@gmail.com

ABSTRACT

With wireless sensor network (WSN) wide applications in popularity, securing its data becomes a

requirement. This can be accomplished by encrypting sensor node data. In this paper a new an

efficient symmetric cryptographic algorithm is presented. This algorithm is called wireless sensor

network wavelet curve ciphering system (WSN-WCCS). The algorithm idea based on discrete

wavelet transformation to generate keys for each node in WSN. It implements on hierarchical

clustering WSN using LEACH protocol. Python programming language version 2.7 was used to

create the simulator of WSN framework and implement a WSN-WCCS algorithm. The simulation

result of the proposed WSN-WCCS with other symmetric algorithms has shown that its execution

time fastest among AES, 3DES and DES 15%, 55% and 17%.

Key words: Cryptography, Discrete Wavelet Transform, Wireless sensor network

شبكة الاستشعار اللاسلكيةت لالويفل نظام تشفير موجة

 الخلاصة

سطة تشفير بيانات جازه بوانامن بياناتها اصبح ضرورة وهذا يتم ا (WSN) مع اتساع رواج تطبيقات شبكة الاستشعار اللاسلكية

شبكة لة الويفلت ير موجي هذا البحث نقدم خوارزمية جديدة و كفوءة للتشفير المتماثل. الخوازمية تدعى نظام تشفف .ستشعارنود الا

شبكة في اتنوداليح لكل يفلت لتوليد مفاتارزمية تعتمد على التحويل المتقطع للوالخوفكرة . (WSN-WCCS) الاستشعار اللاسلكية

تم LEACH.روتوكول م تطبيقها علي هيكل الكلاستر لشبكة الاستشعار اللاسلكية تستخدم بالخوارزمية ت .الاستشعار اللاسلكية

 (WSN-WCCS) وتطبيق خوارزمية الاستشعار اللاسلكيةهيكل شبكة لانشاء محاكاة 2.7ام لغة البرمجة بايثون اصدار استخد

بحوالي AES, 3DES, DES انها اسرع من خوارزميات التشفير المتماثل الاخرى اظهرت للخوارزمية المقترحة تائج المحاكاة ن

17,% 55,% 15%

 .شبكة الاستشعار اللاسلكية للويفلت،التحويل المتقطع ,التشفير الرئيسية:الكلمات

http://www.joe.uobaghdad.edu.iq/
http://creativecommons.org/licenses/by-nc/4.0/

Journal of Engineering Volume 25 June 2019 Number 6

68

1. INTRODUCTION

In the last twenty-years wireless sensor network (WSN) development become a great interest area

for industry such as transportation, civilian, healthcare, military and commercial applications. So, as

this grown go day by day and beside its sensors small size, low cost and low power a security

mechanisms become a big challenge due to its resources constrained. Furthermore, the nature of

communication within WSN make eavesdropping and data modification more easy.

Cryptography is the core techniques to protect data in WSN. Due to the limitation of the WSN

batteries power and computation speed make traditional security methods unstable to secure WSN

data. However, there are two techniques in cryptography symmetric and asymmetric. In symmetric

the same key is shared between two nodes and used for message encryption and decryption process.

On other side, asymmetric two keys are used one to encrypt message and other one is used to

decrypt message.

In fact, some researchers used asymmetric cryptography, Kumaran, et al., 2016, but most studies in

WSN data security, M. Panda,2015, Satyabrata, et al., 2016, and Li, Juan, 2017, preferred to use

symmetric cryptography (e.g., AES) to reduce energy consumption. This study is used a new

symmetric cryptography algorithm is called WSN wavelet curve ciphering system (WSN-WCCS).

In this algorithm a wavelet signal will be used to generate keys in such way that each node in the

WSN has its own key. Our aim is developing data encryption algorithm using wavelet signal to

achieve the following:

 Fast implementation for encryption and decryption process than other symmetric

cryptography techniques such as AES, DES and 3DES.

 Flexibility in generating a number of keys for each node in WSN.

 Protection WSN data from eavesdropping and ciphertext attack.

 Reducing memory usage because it can perform computation in place without need to a

temporary array

In this study a new algorithm is proposed to generate encryption keys based on discrete wavelet

transformation. In which, secret key extracted from a multilevel up to 3 levels signal decomposition

type Daubechies (one-dimension) as shown in section 3 in full details. The algorithm applied on

hierarchical clustering WSN using LEACH protocol. Also, a comparison with other algorithm

DES,3DES and AES have been made. It found a WSN-WCCS algorithm achieves significantly

faster than other algorithms. The paper is presented as follows: section 2 contains a survey of related

works on using discreet wavelet transformation DWT as base to generate keys in WSN, section 3

shows a study method which demonstrates key generation based on DWT multilevel decomposing

using one dimension Daubechies and steps of building a WSN-WCCS algorithm, section 4 are

discussed simulation result of the proposed algorithm with other symmetric algorithms (AES, DES

and 3DES) and finally section 5 includes study conclusion.

3. RELATED WORK

Based to our knowledge there is a few studies that used discreet wavelet transformation DWT as

base to generate keys in WSN. In Keven and Fekri, 2004 study, they used wavelet transformation

through finite fields GF(256) to produce private key cryptosystem size 128 Byte. They conducted a

charting on the field to their opposite in the field through nonlinear device. In a WSN-WCCS the

key value is used in the process of encoding and decoding message using base64 method.

http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.F.%20Fekri.QT.&newsearch=true

Journal of Engineering Volume 25 June 2019 Number 6

69

Another study Koduganti and Avadhani, 2011, used DWT as base for authentication message in

the network. They generated keys using one of generated algorithm then transformed generated keys

using Haar technique. The transmitted encryption key is received then applied to encrypted message.

So, the decryption key is retrieved from the reverse DWT. A Daubechies (one-dimension) wavelet

is used in a WSN-WCCS because it has different types (from 1 to 20). In order to maximize

complexity for opponent to know which type that has been used to generate secret keys in the

algorithm.

In DebayanGoswami et al., 2013, study they generate keys consist of DWT decomposition code

and bookkeeping to encrypt file format (.txt, .doc,.bmp). In the decryption process they used the

inverse of DWT. A WSN-WCCS algorithm is different from this method in that its using

coefficient details value as secret keys and that will be used for encryption/decryption message in

wireless network. Beside the proposes algorithm applied on hierarchical clustering WSN, using

node id to assign secret key to each node WSN.

3. STUDY METHOD

The basic idea of a WSN-WCCS is generating keys based on DWT multilevel decomposing using

one dimension Daubechies wavelet. The result values of DWT process will be used as encryption

keys assigned to each node in a WSN. So, to achieve that the following steps are:

3.1. Key Generation

Wavelet transformation is defined as an assortment of tools for transforming from time into convert

domain to discover transfer coefficient. Subsequently, the coefficients also can be transformed

again into the time domain for conversations many times. The fundamental issue in DWT are using

low-pass (approximate coefficient) and high pass (details coefficient) filter to decompose signal

simultaneously batch (h) into levels Shukla and Tiwari, 2013, as shown in Fig.1.

Figure 1 a. DWT b. inverse DWT for three levels coefficient Haddadi, et al., 2014

In Fig 1: n is the number of samples, x[n] is input samples to the DWT, d1(n), d2(n) and d3(n) are

the coefficient details and C3(n) is coefficient approximate. Eq. (1) and (2) are used to calculate low-

pass (coefficient approximate) and high-pass (coefficient details)

x̂[n] = ∑ 𝑥[𝑘] ℎ0̂ (𝑛)[2𝑛 − 𝑘] 𝑙𝑜𝑤 − 𝑝𝑎𝑠𝑠 (1)

∞

𝑘=−∞

Journal of Engineering Volume 25 June 2019 Number 6

70

x̂[n] = ∑ 𝑥[𝑘] ℎ1̂ (𝑛)[2𝑛 − 𝑘] ℎ𝑖𝑔ℎ − 𝑝𝑎𝑠𝑠 (2)

∞

𝑘=−∞

Eq. (3) is used to get the original input sample x[n]

𝑥[𝑛] = 𝑐3[𝑛] ⊕ 𝑑3[𝑛] ⊕ 𝑑2[𝑛] ⊕ 𝑑[𝑛] (3)

In this algorithm Daubechies (one-dimension) wavelet is used because it has different types of

Daubechies (from 1 to 20). In order to make it harder for opponent to know which type was used in

the algorithm to generate keys. Posterior, coefficient details values are used as secret keys for

encryption and decryption message in the network. Also, decomposition on input single made up to

3 levels. In order to increase the complexity for opponent in finding out which level the node request

its secret key.

owever, a hierarchical clustering WSN is used in this study. The network organized into a number of

clusters connected to the base station. Each cluster consists of two or more nodes connect to its

cluster head. So, each node sensory data and send it to the cluster head, which in turn aggregate

data and send it to the base station. The cluster head selected based on LEACH “Less Energy

Adaptive Clustering Hierarchy Protocol”, Tandel, 2016. In LEACH protocol all the nodes in the

network can be selected as cluster head (CH). The node with highest energy will be elected as CH.

In a WSN-WCCS algorithm the key values will be taken from d1, d2 and d3 lists and be used as

secret key for node, CH and base station.

For example, if the network consisting of 50 nodes then 50 keys need to be generated as follow:

1. Generate 50 random numbers samples and store it in array XX [] to be used as input to the

system

XX=[54708062329, 95614112681, 38173952881, 26675615022, 43148396325,

93140605049, 982871032, 437773644, 2808779973, 8302567691, 30120833, 9633572973,

367073964, 5685987587, 7043562657, 924642211, 98155609, 407801576, 9182898601,

6653191725, 2182378616, 7340946955, 127564428L, 9102868022, 9655901195,

46263082828, 64938154071, 52819499975, 7220372196, 454533412, 8198891770,

9640024570, 2731045696, 5461756022, 7323979817, 5463058208, 32846240926,

56207566538, 30003067971, 34346330116, 63228815450, 9267229129, 5365922212,

8501765435, 101383779, 512533167, 5228889384, 8265300179, 5023473826, 4599860403]

2. Compute the DWT using Eq. (1) and (2) to compute low-pass (coefficient approximate) and

high-pass (coefficient details) for Daubechies (one-dimension) wavelet type 2 (db2). The

result will be store in three list d1, d2 and d3 as shown in the source code in the appendix

A1.

3. The result Daubechies three levels details coefficient values for d1, d2 and d3 lists are

shown in Fig. 2. Thus each value represents a secret key for each node. The secret key is

assigned each node based on node id. For example, the key value is -1295000739.643582 is

assign to the node id =5 in Daubechies level 3 details coefficient which represented in d3

list. So, in this step assigned each node in a WSN a key from d1 list using node id.

Journal of Engineering Volume 25 June 2019 Number 6

71

4. Encrypted message using key value with encode base64 method see Table 1. In base64

encode text to binary data in ASSCII see the source code of xor_crypt_string in the appendix

A.1. For instance, encode the message “Hello” the steps are:

1-EecodeBase64(Hello) SGVsbCA

2-Encryption (“SGVsbCA”,key=“-1295000739.643582”) ciphertext=

“ZVdYXVk=”

Here a concatenation operation in step 2 the results will be in the following order S-G2V9…

in case the message is larger than the key, then recycle key value again i.e. starts again from

-,1,2,9,5 and so on and apply result of the concatenation base64 encoder to get the ciphertext.

“ZVdYXVk=”

Figure 2. Daubechies level 1,2 and 3 details coefficient value graphic chart.

Journal of Engineering Volume 25 June 2019 Number 6

72

Table1.Base64 Encoding.

Text

content
H E l L O

ASCII 72 101 108 108 111

Bit

pattern
0 1 0 0 1 0 0 0 0 1 1 0 0 1 0 1 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 0 1 0 0 0 0 0

Index 18 6 21 44 27 2 0

Base64-

encoded
S G V s b C A

Note the Base64-encoded value is taken from mapping index value to Base64-encoded table.

For example, 18 in the table equal to S.

5. The Decryption message process again the secret key will be in the decode base64. So, first

step removes the key from the encoded message and apply it on the decode base64 as shown

below:

1-Encryption (“ZVdYXVk=”, key= “-1295000739.643582”) M= “SGVsBCA”

2-DecodeBase64(M) plaintext= “Hello”

3.2 LEACH Protocol

LEACH is one of the main routing protocol that used in forming cluster in WSN in order to prolong

the network lifetime. In each cluster all the nodes connected to CH via single hop. So the nodes

collection data send to their CH which in turn forward it the base station. The LEACH protocol

constructed in two phases setup and steady.

In setup phase the network divided into groups of nodes or clusters. In the network all the nodes are

equal in the probability to be elected as CH. The node with highest residual energy will be elected as

CH. Thus, each CH will send advertised message to inform other nodes in the groups that it become

as CH using Eq. (4) Gupta, and Marriwala, 2017. Other non CH nodes will send joining message

to the elected CH in order to become Cluster Member (CM).

𝑡(ℎ) =

{

𝑃𝑏

1 − 𝑃𝑏 × [𝑟𝑜𝑛 𝑚𝑜𝑑 (
1
𝑃𝑏
)]
 ∀ℎ ∈ 𝑀

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
}

 (4)

Where

h= a random number between (0 and 1),

Pb =Probability of CH

M= is the all the nodes that are not selected as CH

ron = round number.

t(h)= thereshold for node that became as CH in the current round

1/ Pb = first round that in which CH nodes had been elected.

Journal of Engineering Volume 25 June 2019 Number 6

73

The node elected as CH in the current round if its values is less than t(h) otherwise it remains normal

node. Although, when a node elected as CH once it cannot be elected again as CH. So, the process

continues till all the nodes in the network become CH once. In steady phase all CMs send their

sensory data to their CH through single hop. The CH summed the collected data and send it the base

station via other CHs or directly using static route. After specified period of time the network start

again the setup phase.

3.3 WSN-WCCS Algorithm

1. Generate (n) random number of sample size 18 Byte and store it in xx[n] array

2. input x[n] samples into DWT function to

a. Calculate low-pass and high-pass up to 3 levels from Daubechies wavelet (one-

dimension) type 2

b. Store the result of computation in d1, d2, d3 and C3 lists in a routing table.

3. Assign each cluster header in WSN a key from d2 list using cluster id.

4. Assign each base station in WSN a key from d3 list using BS id.

5. Assign each node in WSN a key from d1 list using node id.

6. Each a live node in the network sends its ID to the base station BS, to request a key

7. BS check the node id validity and send the key that assign to this node

8. Node use the key to encrypt message. Subsequently, send the encrypted message with its id

to the destination node.

9. In BS again check node id that attach with the message in routing table. In order to find

assigned key and used it to decrypt the message.

4. RESULTS

The algorithm applied on hierarchical clustering for a WSN that used LEACH protocol see appendix

A2 LEACH protocol source code. The energy consumption is ignored in this study and

consternated on the calculation speed of encryption algorithm and storage usage. Python language

version 2.7 was used to create the simulator of WSN framework and implement a WSN-WCCS

algorithm. The simulator implemented on laptop Lenovo, processor intel(R) Core(TM)-4200 CPU

@ 1.60 GHz 2.30GHz and RAM 4.00GB. The network simulator parameters are assumed the same

for the four algorithms (DES, AES, 3DES and WSN-WCCS) as shown in Table2. The Fig. 3 shown

WSN before using clustering and Fig. 4 show WSN after clustering. In Fig. 5 screenshot of running

a WSN-WCCS in which final round 2545, total remaining energy is 0.0000 and node id: 36.

Encrypted message “ektdWFoWQVxAVwE=”.

The WSN-WCCS algorithm is compare with other symmetric algorithms DES, 3DES and AES

based on speed of execution time and storage usage. The comparison was done by running the

fourth algorithms separately. The result shown in Table 3. A WSN-WCCS execution time is 15%

faster than AES, 55% faster than 3DES and 17% faster than DES. In the storage usage it takes less

storage than 3DES, slightly more storage than AES and DES.

Journal of Engineering Volume 25 June 2019 Number 6

74

Table 2. Simulation Parameters.

S.No Parameter Unit

1 number of nodes 50

2 Area 100 x 100 M

3 Message size 16 Byte

4 Header length 150 bits

5 INITIAL_ENERGY 2 Joules

6 Energy dissipated at the transceiver electronic (E _ELEC) 50e-9 Joules

7 Energy dissipated at the data aggregation (E_DA) 5e-9 Joules

8 Energy dissipated at the power amplifier (supposing a

multi path Εmp)

0.0013e-12 Joules

9 Energy dissipated at the power amplifier (supposing a

line-of-sight free-space channel E_FS)

10e-12 Joules

10 Base station position BS_POS_X = 10.0

BS_POS_Y = 10.0

 Figure 3. Initial phase WSN before clustering.

Journal of Engineering Volume 25 June 2019 Number 6

75

Figure 5. Screenshot of running WSN-WCCS.

Figure 4. Initial phase WSN after clustering.

Journal of Engineering Volume 25 June 2019 Number 6

76

Table 3. Performance Analysis.

Algorithm Message

Size

Key size Execution time

in seconds

Total storage usage in

byte

AES 16 Byte 16 Byte 0.171 32 bytes

3DES 16 Byte 16 Byte 0.562 64 bytes.

DES 16 Byte 8 Byte 0.187 32 bytes

WSN-WCCS 16 Byte 18 Byte 0.016 34 bytes

In Table 3, the total storage usage for AES is 32bytes. But for 10 rounds the key expansion will

be equal to 176 bytes 16 x (10+1). In a WSN-WCCS the total storage 34. While a DES the total

storage is 32 bytes because DES used key sized 8 bytes for each block size is 8 bytes. Whereas,

the message size is 16 bytes thus the total size is 32 (16x2). The 3DES algorithm increased the

key size via the reused of DES therefore the total size storage is (32x2=64 bytes).

4.1 WSN-WCCS Cryptanalysis

The symmetric technique is based on using the same key between two nodes to encrypt and

decrypt message. So, the secret key is considering vulnerable for attacker. Thus making its long

and hard to predictable or cracked by the attackers is considered important issue. But due to a

WSN resource constraints makes this issue a big challenge for researchers. This section is

discussed the security issue of a WSN-WCCS algorithm in compare with other algorithms DES,

3DES and AES

The main disadvantage in DES algorithm is that a secret key size is small and can be creaked

using brute force attack. In a WSN-WCCS the key sized is larger and randomly selected and

assigned to the node in the network. The 3DES increased the key sized via the reused of DES

algorithm using either two or three different keys (112 or 168 bit), but the main drawback that it

taken more computation time, Patil, et al., 2016, which in turn increase the energy consumption,

thus make it not appropriated for securing WSN framework. The AES algorithm is used in

widely and efficiently in securing a WSN data, Hung, et al., 2018. The key length is 128 bit

used in more than one rounds on 4x4 state matrix for full encryption/decryption using

permutation and substitution operations. Whereas, a WSN-WCCS algorithm is used only

substitution operation. Beside in this study the secret key length 18 Byte (144 bit) is randomly

generated from Daubechies wavelet signals (from 1 to 20). Which maximums the complexity for

adversary to crack the secret key that used with base64 encode/decode method. Although, a

WSN-WCCS execution time in this study for encryption process is 15% faster than AES.

However, a WSN-WCCS based on the base64 decode and decode method. So, if the attacker

discovered the way the secret is generated then attacker can easily reveal the original message

using base64 decode table. In the proposed algorithm a random key is generated based on DWT

multilevel decomposing using one dimension Daubechies wavelet. While the DES, 3DES and

AES start with seed key is generated randomly using random generated then used shift rotate

operation in DES and 3DES to generate secret key using permutation computation matrix in 16

rounds. Whereas AES four operations (Add Round key, Mix. Column, Shift Row and Subbyte)

are used to generate secret key on 4x4 state matrix in 10 rounds for key sized 128 bits. Thus,

there is a probability that the same seed key is used more than one times because it generates

randomly. Thus, when adversary discovered the secret key values that used more than one times

Journal of Engineering Volume 25 June 2019 Number 6

77

then he or she can figure out how keys is generated randomly. While in a WSN-WCCS

algorithm the level of security is increased because even the adversary can figure how the key is

generated then he or she has to figure out which wavelet single is used (Haar, Daubechies. Coifle

…etc.). Furthermore, even the adversary has ability to find out a wavelet signal in the algorithm

is a Daubechies. Thus, the adversary must be able also to specify the signal type which is

between (1 and 20). Even though, the attacker can be able to specify the signal type then he or

she needs to compute DWT multilevel decomposing for many level. Which is very harder and

take much time for adversary to check each point on each curve on each level.

5. CONCLUSION

Symmetric cryptograph was widely used to secure data in WSN network. In this study a new

algorithm proposes, based on our knowledge e is the first algorithms that used DWT only to

generate keys in WSN. A WSN-WCCS algorithm was designed based on DWT multilevel

decomposing using one dimension Daubechies wavelet signal. It implements on hierarchical

clustering WSN that use LEACH protocol.

In general, the study result has shown the proposed algorithm is faster than other symmetric

techniques and efficient in storage usage. Even its used a larger key size than the others

algorithms. Also, its take less storage usage about 30 bytes than 3DES algorithm and more

storage usage about 2 bytes than AES and DES algorithms.

 REFERENCES

 Kumaran, Senthil & Nallakaruppan, M.K. & Mohan, Senthilkumar., 2016, Review of

asymmetric key cryptography in wireless sensor networks., International Journal of

Engineering and Technology (IJET), Vol. 8 ,No. 2 , pp. 859-862.

 Panda, Madhumita, 2015, Data security in wireless sensor networks via AES algorithm.

2015 IEEE 9th International Conference on Intelligent Systems and Control (ISCO),

Coimbatore, India, 9–10 January 2015, pp. 1–5.

 Satyabrata Roy, Jyotirmoy Karjee, U.S. Rawat, Dayama Pratik N., Nilanjan Dey, 2016,

Symmetric Key Encryption Technique: A Cellular Automata based Approach in Wireless

Sensor Networks, Procedia Computer Science, Vol. 78, pp. 408-414.

 Li, Juan. ,2017, A Symmetric Cryptography Algorithm in Wireless Sensor Network

Security, International Journal of Online Engineering (iJOE), Vol. 13, No. 11, pp. 102-

110

 Kevin Sean Chan and F. Fekri, 2004, A block cipher cryptosystem using wavelet

transforms over finite fields, in IEEE Transactions on Signal Processing, Vol. 52, no. 10,

pp. 2975-2991.

 Koduganti Venkata Rao & P. S. Avadhani ,2013, Authentication based on wavelet

transformations, Journal of Discrete Mathematical Sciences and Cryptography, Vol. 9,

No. 3, pp. 513–521

https://en.wikipedia.org/wiki/Coiflet
http://online-journals.org/index.php/i-joe/issue/view/337

Journal of Engineering Volume 25 June 2019 Number 6

78

 DebayanGoswami, NaushadRahman, JayantaBiswas, AnshuKoul, Rigya Lama

Tamang,Dr. A. K. Bhattacharjee, 2011, A Discrete Wavelet Transform based

Cryptographic algorithm, IJCSNS International Journal of Computer Science and

Network Security, Vol.11 No.4, pp. 178-182

 K. K. Shukla and A. K. Tiwari,2013, Efficient Algorithms for Discrete Wavelet

Transform, SpringerBriefs in Computer Science, London, UK

 R. Haddadi, E. Abdelmounim, M. El Hanine, A. Belaguid, 2014, Discrete wavelet

transform based algorithm for recognition of QRS complexes, World of Computer

Science and Information Technology Journal (WCSIT), Vol. 4, No. 9, pp. 127-132.

 Reshma I. Tandel, 2016, Leach Protocol in Wireless Sensor Network: A Survey, (IJCSIT)

International Journal of Computer Science and Information Technologies, Vol. 7, No. 4,

pp. 1894-1896

 Gupta, S., & Marriwala, N. ,2017, Improved distance energy based LEACH protocol for

cluster head election in wireless sensor networks, 2017 4th International Conference on

Signal Processing, Computing and Control (ISPCC), pp. 91-96.

 Patil P, Narayankar P, Narayan DG, Meena SM, 2016, A comprehensive evaluation of

cryptographic algorithms: DES, 3DES, AES, RSA and Blowfish. Elsevier B. V. Procedia

Computer Science, Vol. 78, pp. 617-24.

 Hung, Chung-Wen; Hsu, Wen-Ting, 2018, Power Consumption and Calculation

Requirement Analysis of AES for WSN IoT, Sensors, Vol. 18, No. 6, pp. 1-11.

Appendix A

A.1 WSN-WCCS source code

import matplotlib.pyplot as plt

import numpy as np

import random

import uuid

import hashlib

import pywt

import time

import numpy

input samples that used to generate wavelet signal array XX[]

#===#

XX=[54708062329, 95614112681, 38173952881, 26675615022, 43148396325, 93140605049,

 982871032, 437773644, 2808779973, 8302567691, 30120833, 9633572973, 367073964,

 5685987587, 7043562657, 924642211, 98155609, 407801576, 9182898601, 6653191725,

 2182378616, 7340946955, 127564428L, 9102868022, 9655901195, 46263082828, 64938154071,

Journal of Engineering Volume 25 June 2019 Number 6

79

 52819499975, 7220372196, 454533412, 8198891770, 9640024570, 2731045696, 5461756022,

7323979817, 5463058208, 32846240926, 56207566538, 30003067971, 34346330116, 63228815450,

9267229129, 5365922212, 8501765435, 101383779, 512533167, 5228889384, 8265300179,

5023473826, 4599860403]

#===#

Encryption and Decryption Function xor_crypt_string

#===#

def xor_crypt_string(data, key, encode=False, decode=False):

 from itertools import izip, cycle

 import base64

 if decode:

 data = base64.decodestring(data)

 xored = ''.join(chr(ord(x) ^ ord(y)) for (x,y) in izip(data, cycle(key)))

 if encode:

 return base64.encodestring(xored).strip()

 return xored

#===#

#Compute wavelet levels for high and low pass filters

#===#

def wrcoef(X, coef_type, coeffs, wavename, level):

 N = np.array(X).size

 a, ds = coeffs[0], list(reversed(coeffs[1:]))

 if coef_type =='a':

 return pywt.upcoef('a', a, wavename, level=level)[:N]

 elif coef_type == 'd':

 return pywt.upcoef('d', ds[level-1], wavename, level=level)[:N]

 else:

 raise ValueError("Invalid coefficient type: {}".format(coef_type))

#===#

#Compute CPU execution time for A WSN-WCCS

#===#

def benchmark1():

 st = time.time()

 coeffs = pywt.wavedec(XX, 'db2', level=3)

 A3 = wrcoef(XX, 'a', coeffs, 'db2', level)

 D3 = wrcoef(XX, 'd', coeffs, 'db2', level)

 D2 = wrcoef(XX, 'd', coeffs, 'db2', 2)

 D1 = wrcoef(XX, 'd', coeffs, 'db2', 1)

 for i in xrange(50):

 print (i,xor_crypt_string("The answer is no",str(D1[i]) ,encode=True))

 en = time.time()

 print ("WSN-WCCS Benchmark duration: %r seconds" % (en-st))

 print ("start time="+str(st), "End Time="+str(en))

Journal of Engineering Volume 25 June 2019 Number 6

80

#===#

#Compute memory usage for A WSN-WCCS

#===#

benchmark1()

from guppy import hpy; h=hpy()

h.heap()

print h.heap()

#===#

A.2 Implement WSN-WCCS with LEACH protocol source code

The generated keys are stored in table in database name MData.db. The database created using SQLite

3.10.1 database browser. The table store node ID, cluster ID and base station ID and secret keys. Each

node send request for secret key by sending its ID to the base station using def sense () functions. In

which the node use waveKey(node_id) to get its secret key and used its in xor_crypt_string() . in order

to encrypt the message “Hello world”

#===#

def sense(self):

 node_id=(self.id)

 Nodekey=waveKey(node_id)

 Encrypt_ Message=xor_crypt_string("Hello world",str(Nodekey),encode=True)

 self.tx_queue_size = cf.MSG_LENGTH

 self.amount_sensed += cf.MSG_LENGTH

 print 'NodeID:',s,'Encrypted Message:', Encrypt_ Message

#===#

def waveKey (Nid):

 con = lite.connect('MData.db')

 with con:

 cur = con.cursor()

 cur.execute("Select BSKeyA,BSKeyD,CusterID,CluserKey,NodeID,NodeKey from Table1 where

NodeID='" + str(Nid) +"'")

 record=cur.fetchall()

 if not cur.rowcount:

 print "No results found"

 secret_key=None

 else:

 for row in record:

 secret_ke = row[3]

 return secret_key

 cur.close()

 con.close()

#===#

#Encryption / Decryption Function

#===#

def xor_crypt_string(data, key, encode=False, decode=False):

 from itertools import izip, cycle

 import base64

 if decode:

Journal of Engineering Volume 25 June 2019 Number 6

81

 data = base64.decodestring(data)

 xored = ''.join(chr(ord(x) ^ ord(y)) for (x,y) in izip(data, cycle(key)))

 if encode:

 return base64.encodestring(xored).strip()

 return xored

#===#

the following functions are used to calculate the transmit energy, received energy

#===#

 def transmit(self, msg_length=None, destination=None):

 logging.debug("node %d transmitting." % (self.id))

 if not msg_length:

 msg_length = self.tx_queue_size

 msg_length += const.HEADER_LENGTH

 if not destination:

 destination = self.network_handler[self.next_hop]

 distance = self.distance_to_endpoint

 else:

 distance = calculate_distance(self, destination)

 # transmitter energy model

 energy = const.E_ELEC

 if distance > const.THRESHOLD_DIST:

 energy += const.E_MP * (distance**4)

 else:

 energy += const.E_FS * (distance**2)

 energy *= msg_length

 # automatically call other endpoint receive

 destination.receive(msg_length)

 # after the message is sent, queue is emptied

 self.tx_queue_size = 0

 self.amount_transmitted += msg_length

 self.energy_source.consume(energy)

#===#

 def receive(self, msg_length):

 logging.debug("node %d receiving." % (self.id))

 self._aggregate(msg_length - const.HEADER_LENGTH)

 self.amount_received += msg_length

 # energy model for receiver

 energy = cf.E_ELEC * msg_length

 self.energy_source.consume(energy)

#==#

LEACH Protocol

Journal of Engineering Volume 25 June 2019 Number 6

82

#==#

class LEACH(RoutingProtocol):

 def setup_phase(self, network, round_nb=None):

 logging.info('LEACH: setup phase.')

 # decide which network are cluster heads

 prob_ch = float(const.NB_CLUSTERS)/float(const.NB_NODES)

 heads = []

 alive_nodes = network.get_alive_nodes()

 logging.info('LEACH: deciding which network are cluster heads.')

 idx = 0

 i=0

 while len(heads) != const.NB_CLUSTERS:

 node = alive_nodes[idx]

 u_random = np.random.uniform(0, 1)

 # node will be a cluster head

 if u_random < prob_ch:

 node.next_hop = const.BSID

 heads.append(node)

 idx = idx+1 if idx < len(alive_nodes)-1 else 0

 # ordinary network choose nearest cluster heads

 logging.info('LEACH: ordinary network choose nearest nearest cluster head')

 for node in alive_nodes:

 if node in heads: # node is cluster head

 continue

 nearest_head = heads[0]

 # find the nearest cluster head

 for head in heads[1:]:

 if calculate_distance(node, nearest_head) > calculate_distance(node, head):

 nearest_head = head

 node.next_hop = nearest_head.id

 network.broadcast_next_hop()

