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ABSTRACT 

Critical buckling temperature of angle-ply laminated plate is developed using a higher-order 

displacement field. This displacement field used by Mantari et al based on a constant ‘‘m’’, which 

is determined to give results closest to the three dimensions elasticity (3-D) theory. Equations of 

motion based on higher-order theory angle ply plates are derived through Hamilton, s principle, 

and solved using Navier-type solution to obtain critical buckling temperature for simply supported 

laminated plates. Changing (α2/ α1) ratios, number of layers, aspect ratios, E1/E2 ratios for thick 

and thin plates and their effect on thermal buckling of angle-ply laminates are studied in detail. It 

is concluded that, this displacement field produces numerical results close to 3-D elasticity theory 

with maximum discrepancy (7.4 %). 

Keywords: thermal buckling, critical temperature, angle-ply plates, shear deformation theory 

 

ازاحة جديدة دالة الانبعاج الحراري لصفائح طبقية غير متعامدة الزوايا باستخدام  

 م.د. ابتهال عباس صادق                                                             أ.م.د. وداد ابراهيم مجيد

 الخلاصة
تم تطويرها باستخدام مجال ازاحة ذات رتبة عالية. هذه  غير متعامدة الزوايالصفائح طبقية مركبة  جرحدرجة حرارة الانبعاج ال

تم ايجاد قيمتها لتعطي نتائج متطابقة والتي  ’’m‘‘الذي اعتمد على عامل  J.L. Mantari et alالازاحة الجديدة اقترحت من 

طبقية ائح صفلرية ثنائية الابعاد ذات رتبة عالية مع الحل المرن ثلاثي الابعاد. تم اشتققاق مجموعة من المعادلات الاساسية لنظ

(. هذه المعادلات تم Hamilton’s Principle) دأ هاملتون من خلال مب  متناظرة مكونة من طبقات غير متعامدة الزواياغير 

طبقية مركبة لصفائح . تم دراسة شكل طور الانبعاج الحراري ظروف حدودية بسيطةل ( Navier’s Solutionباستخدام )حلها 

لصفائح  المرونة معامل، نسبة الطول الى العرض، نسبة طبقاتعدد ال، 1α /2(α(مع نسبة التمدد الحراري  غير متعامدة الزوايا
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( وكذلك % 7.4رن ثلاثي الابعاد وكان اكبر فرق )مسميكة ورقيقة. وقد لوحظ ان هذه الازاحة تعطي نتائج متطابقة مع الحل ال

 (.% 9.4من نظريات القص الاخرى وكان اكبر فرق )النتائج الحاصلة 

 .نظرية القصالانبعاج الحراري، درجة الحرارة الحرجة، صفائح غير متعامدة،  الكلمات الرئيسية:
 
1. INTRODUCTION 

Laminated composite plates are used widely in aeronautical, marine and mechanical industries as 

well as in other fields of modern engineering structures , those structure are often subjected to 

thermal load especially aircraft, launch vehicle and missiles structures, which may cause buckling 

of structure  with certain boundary conditions, therefore there are many investigations about 

thermal buckling.  

Thangaratnam, 1989. used finite element method using semiloof elements to analyze critical 

buckling temperature for composite laminates under thermal load. The equation of motion for 

critical temperature is obtained by equating the second variation of total potential energy to zero. 

Different boundary condition for cross-ply and angle-ply symmetric and antisymmetic stacking 

are analyzed. Chang and Leu, 1991. studied thermal buckling of antisymmetric angle-ply 

laminated simply supported subjected to uniform thermal load using higher order deformation 

theory which account for transverse shear and transverse normal strain to obtain exact-closed form 

solution. Obtained results are compared with first-order shear deformation theory and Reddy’s 

higher-order shear deformation theory and showed surprising discrepancies exist. Chen, et al, 

1991, implemented finite element method to analyze thermal buckling temperature of composite 

plates under uniform or nonuniform thermal load. Thermal-elastic Mindlin plate theory is used by 

which the transverse shear deformation and rotatory inertia were taken into account. Meyers and 

Hyer, 1991, used Rayleigh-Ritz formulation to obtain thermal buckling and post buckling 

response of symmetrically laminated composite plates. Two different laminates with two types of 

simply supported edges, fixed and sliding are investigated. Uniform temperature change along 

these laminates thickness is considered. Noor and Burton, 1992, Presented three-dimensional 

analytical solution for thermal buckling multilayered angle-ply composite plates with temperature-

dependent thermo elastic properties. The temperature is assumed to be independent of the surface 

coordinates, but has symmetric variation along plate thickness. Noor, et al , 1992, studied buckling 

of laminated plates under combined thermal and axial loadings. Multi parameter-reduction method 

based on a first-order shear deformation theory, in connection with mixed finite-element is 

developed to study the effect of different lamination and material parameters on stability of the 

plate. Noor, et al , 1992, developed three-dimensional elasticity solutions for the critical buckling 

temperature of composite plates. The pre buckling deformations are taken into account. Chen and 

Liu], 1993, used first-order plate theory to analyze thermal buckling of angle-ply composite plates 

subjected to a uniform temperature change with Levy-type boundary conditions. Prabhut and 

Dhanaraj, 1994, analyzed thermal buckling of symmetric cross-ply and antisymmetric angle-ply 

laminated composite plates subjected to uniform temperature distribution using finite element 

method which based on the first order shear deformation theory. Matsunaga, 2006, investigated 

thermal buckling of angle-ply laminated composite and sandwich plates based on two-dimensional 

global higher order shear deformation theory. Fundamental governing equations are derived by 

the principle of virtual work and solved using power series expansion of continuous displacement 

components for simply supported laminated composite and sandwich plates.[ Shiau et al , 2010, 

studied thermal buckling behavior of composite laminated plates by using finite element method. 

The results indicate that the higher thermal buckling mode shapes are formed when the laminates 
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produce higher bending rigidity along the fiber direction and higher in-plane compressive force in 

a direction perpendicular to the fiber direction. Shi et al], 2010, studied nonlinear thermal post 

buckling of antisymmetric angle-ply composite plates subjected on mechanical and thermal loads 

using finite element formulation. Bourada et al , 2011, used a new four-variable refined plate 

theory for thermal buckling analysis of functionally graded material (FGM) sandwich plates. The 

thermal loads are assumed as uniform, linear, and nonlinear temperature rises across the thickness 

direction. Abdul-Majeed , 2011, investigated thermal buckling of isotropic thermo elastic thin 

plates using governing differential equation and the Rayleigh-Ritz method. Three types of thermal 

distribution have been considered these are: uniform temperature, linear distribution and non-

linear thermal distribution across thickness. Naji , 2013, investigated critical buckling temperature 

of cross-ply and angle-ply composite laminated plate using classical laminated and higher order 

shear deformation plate theory. Equations of motion are solved using Navier and Levy methods 

for symmetric and anti-symmetric laminated plates. Singh, 2014, presented thermal buckling 

behavior of laminated composite curved panel embedded with shape memory alloy fiber based on 

higher order shear deformation plate theory. Variational principle with finite element modeling 

under uniform temperature loading is used to obtain the responses. Cetkovic and Gyorgy , 2016, 

analyzed thermal buckling of angle-ply laminates using Generalized Layer wise Plate Theory. 

Element stiffness matrix and geometric stiffness matrix are derived based on finite element 

formulation. Cetkovic , 2016, studied thermal buckling of composite plates using new version of 

Layer wise. From the strong form, analytical solution is derived based on Navier's type, while the 

weak form is analyzed using the isoperimetric finite element approximation. Chen, et al], 2016, 

investigated Vibration and buckling behavior of initially stressed and thermally stressed composite plate 

using variation method. The temperature is assumed uniform and linearly distributed through the 

plate thickness. Ounis and Belarbi , 2017, studied the thermal buckling behavior of laminated 

plates with rectangular cutouts using classical plate theory as a base for finite element method. 

Vescovini et al , 2017, used Ritz-based variable-kinematic formulation to study thermal buckling 

of composite plates and sandwich panels. They represented structure by means of sub laminates. 

Critical temperatures obtained were for, with and without accounting for the pre-buckling. Xing 

and Wang , 2017, concerned the critical buckling temperature of functionally graded rectangular 

thin plates. Closed form solutions for the critical thermal parameter are obtained for the plate with 

different boundary conditions under uniform, linear and nonlinear temperature fields using 

separation-of-variable method. 
In present work, critical temperature of simply supported composite plate is obtained using high 
order shear deformation theory of plate based on displacement field used by Mantari et al , 2011 
Effect of many thin and thick plate parameters, such as aspect ratio, E1/E2 ratio, α2/ α1 ratio for 
antisymmetric angle ply are investigated. 
 

2. DISPLACEMENT AND STRAIN 

In present work, critical thermal temperature of simply supported angle ply laminated plate, based 

on new higher order theory is obtained using displacement field proposed by ,Mantari et al , 

2011: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢(𝑥, 𝑦) −  𝑧 (
𝜕𝑤

𝜕𝑥
) +  𝑓(𝑧)𝜃1(𝑥, 𝑦)                                                                           (1) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣(𝑥, 𝑦) −  𝑧 (
𝜕𝑤

𝜕𝑦
) +  𝑓(𝑧)𝜃2(𝑥, 𝑦)                                                                            (2) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤(𝑥, 𝑦)                                                                                                                     (3) 
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Where: 

 𝑢𝑜(𝑥, 𝑦), 𝑣𝑜(𝑥, 𝑦),𝑤0(𝑥, 𝑦), 𝜃1(𝑥, 𝑦), 𝜃1(𝑥, 𝑦), 𝜃2(𝑥, 𝑦) are the five unknown displacements of 

middle surface of the plate. 

𝑓(𝑧) is a shape functions to develop transverse shear strains and then stresses distribution along 

plate thickness.  

For free boundary conditions at the top and bottom surfaces of the plate, the new proposed 

displacement field is, Mantari et al, 2011: 

𝑢(𝑥, 𝑦, 𝑧) = 𝑢𝑜(𝑥, 𝑦) +  𝑧 (
𝑚𝜋

ℎ
𝜃1 −

𝜕𝑤

𝜕𝑥
) + 𝑠𝑖𝑛

𝜋𝑧

ℎ
𝑒𝑚cos  (

𝜋𝑧

ℎ
) 𝜃1                                                  (4) 

𝑣(𝑥, 𝑦, 𝑧) = 𝑣𝑜(𝑥, 𝑦) +   𝑧 (
𝑚𝜋

ℎ
𝜃2 −

𝜕𝑤

𝜕𝑦
) +  𝑠𝑖𝑛

𝜋𝑧

ℎ
𝑒𝑚cos  (

𝜋𝑧

ℎ
)𝜃2                                                 (5) 

𝑤(𝑥, 𝑦, 𝑧) = 𝑤0                                                                                                                            (6) 

Where:  𝑓(𝑧) = 𝑠𝑖𝑛
𝜋𝑧

ℎ
𝑒𝑚cos  (

𝜋𝑧

ℎ
) + 𝑦𝑧 , where, 𝑦 =

𝜋𝑚

ℎ
 , m = constant                                   (7) 

The strain-displacement relations are, Reddy, 2004.  

𝜀𝑥𝑥 =
𝜕𝑢

𝜕𝑥
 ,  𝜀𝑦𝑦 =

𝜕𝑣

𝜕𝑦
   ,  𝜀𝑧𝑧 =

𝜕𝑤

𝜕𝑧
                                                                                   (8,9 and 10)                                                                                                                                                                                                                                                                                                                                                                                          

𝜀𝑥𝑦 =
1

2
(
𝜕𝑢

𝜕𝑦
+
∂v

∂x
) =

1

2
𝛾𝑥𝑦 ,  𝜀𝑥𝑧 =

1

2
(
𝜕𝑢

𝜕𝑧
+
∂w

∂x
) =

1

2
𝛾𝑥𝑧                                                  (11 and 12)                                                                                                    

𝜀𝑦𝑧 =
1

2
(
𝜕𝑣

𝜕𝑧
+
∂w

∂y
) =

1

2
𝛾𝑦𝑧                                                                                                           (13)                                                                                            

Substituting Eqs. (4-6) into Eqs. (8-13) to get the strain associated with the displacement field as 

follow:   

εxx = ε
0
xx + zε1

xx + 𝑠𝑖𝑛
𝜋𝑧

ℎ
𝑒𝑚𝑐𝑜𝑠  (

𝜋𝑧

ℎ
)
ε2

xx                                                                                                                                   (14)                     

  εyy = ε
0

yy + zε1
yy +  𝑠𝑖𝑛

𝜋𝑧

ℎ
𝑒𝑚𝑐𝑜𝑠  (

𝜋𝑧

ℎ
)
 ε2

yy                                                                                        (15) 

γxy = ε
0
xy +zε1

xy + 𝑠𝑖𝑛
𝜋𝑧

ℎ
𝑒𝑚𝑐𝑜𝑠  (

𝜋𝑧

ℎ
)
 ε2

xy                                                                                       (16) 

γxz = ε
0

xz + (−𝑚 ∗ 𝑠𝑖𝑛2(
𝜋𝑧

ℎ
)+𝑐𝑜𝑠

𝜋𝑧

ℎ
) 
𝜋

ℎ
𝑒
𝑚𝑐𝑜𝑠  (

𝜋𝑧

ℎ
)
ε3

xz                                                                    (17) 

γyz = ε
0

yz + (−𝑚 ∗ 𝑠𝑖𝑛2(
𝜋𝑧

ℎ
)+𝑐𝑜𝑠

𝜋𝑧

ℎ
)  
𝜋

ℎ
𝑒𝑚𝑐𝑜𝑠  (

𝜋𝑧

ℎ
)
ε3

yz                                                                                                    (18)  

Where: 
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{

𝜀𝑥𝑥
0

𝜀𝑦𝑦
0

𝛾𝑥𝑦
0

} =

{
 
 

 
 

𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑥
𝜕𝑢

𝜕𝑦
+ 

𝜕𝑣

𝜕𝑦}
 
 

 
 

, {

𝜀𝑥𝑥
1

𝜀𝑦𝑦
1

𝛾𝑥𝑦
1

} =

{
  
 

  
 

𝑚𝜋

ℎ

𝜕Ѳ1

𝜕𝑥1
−
𝜕2𝑤

𝜕𝑥2

𝑚𝜋

ℎ

𝜕Ѳ2

𝜕𝑦
−
𝜕2𝑤

𝜕𝑦2

𝑚𝜋

ℎ

𝜕Ѳ2

𝜕𝑥1
+
𝑚𝜋

ℎ

𝜕Ѳ2

𝜕𝑦

−2
𝜕2𝑤

𝜕𝑥𝜕𝑦 }
  
 

  
 

 , {

𝜀𝑥𝑥
2

𝜀𝑦𝑦
2

𝛾𝑥𝑦
2

} =

{
 
 

 
 

𝜕Ѳ1

𝜕𝑥
𝜕Ѳ2

𝜕𝑦

𝜕Ѳ2

𝜕𝑥
+
𝜕Ѳ1

𝜕𝑦 }
 
 

 
 

         (19,20 and 21)                                                                                                                                                                                                             

 {
γ
𝑥𝑧
0

γ
𝑦𝑧
0 } = {

𝑚
𝜋

ℎ
Ѳ1

𝑚
𝜋

ℎ
Ѳ2

}  ,   {
γ
𝑥𝑧
3

γ
𝑦𝑧
3 } = {

Ѳ1

Ѳ2
}                                                                               (22 and 23)                                                                                                      

 

3. PRINCIPLES OF VIRTUAL WORK 

 

The equations of motion will be derived depending on the new higher order theory using the 

Hamilton’s principles ,Reddy, 2004. 

0 = ∫ 𝛿𝑈 + 𝛿𝑉
𝑡

0
                                                                                                                          (24) 

  Where: U   is the virtual strain energy  

 δU=[∫ {∫ 𝜎𝑥𝑥𝛿
𝑘

ῼ

ℎ

2
−ℎ

2

𝜀𝑥𝑥
𝑘 + 𝜎𝑦𝑦𝛿𝜀𝑦𝑦

𝑘 + 𝜎𝑥𝑦𝛿𝜀𝑥𝑦
𝑘 + 𝜎𝑦𝑧𝛿𝜀𝑦𝑧

𝑘 + 𝜎𝑥𝑧𝛿𝜀𝑥𝑧
𝑘 ] 𝜕𝑥𝜕𝑦}𝜕𝑧] = 0                       (25)                                                                                                                     

𝛿𝑈 = ∫(𝑁1𝛿 𝜀𝑥𝑥
0 +𝑀1𝛿𝜀𝑥𝑥

1 + 𝑃1𝛿𝜀𝑥𝑥
2 +𝑁2𝛿𝜀𝑦𝑦

0 +𝑀2𝛿𝜀𝑦𝑦
1 + 𝑃2𝛿𝜀𝑦𝑦

2 + 𝑁6𝛿𝜀𝑋𝑦
0 +𝑀6𝛿𝜀𝑋𝑦

1  

+𝑃6𝛿𝜀𝑋𝑦
2 + 𝑄2𝛿𝜀𝑦𝑧

0 + 𝑘2𝛿𝜀𝑦𝑧
3 + 𝑄1𝛿𝜀xz

0 + 𝑘1𝛿𝜀xz
3 −)𝜕𝑥𝜕𝑦 = 0                                                (26) 

 Where, (Ni, Mi, Pi, Qi and Ki) are the load results from the following integration: 

(Ni, Mi, Pi) = ∑ ∫ 𝜎𝑖
𝑘 (1 , 𝑧, 𝑠𝑖𝑛

𝜋𝑧

ℎ
𝑒𝑚cos  (

𝜋𝑧

ℎ
)) 𝑑𝑧       (𝑖 = 1,2,6)

𝑧𝑘

𝑧𝑘−1
𝑁
𝑘=1  

(Q1, K1)= ∑ ∫ 𝜎5
𝑘 (1,

𝜋

ℎ
(−𝑚 ∗ 𝑠𝑖𝑛2(

𝜋𝑧

ℎ
) + 𝑐𝑜𝑠

𝜋𝑧

ℎ
)𝑒𝑚cos  (

𝜋𝑧

ℎ
))𝑑𝑧     

𝑧𝑘

𝑧𝑘−1
𝑁
𝑘=1  

(Q2, K2)= ∑ ∫ 𝜎4
𝑘 (1,

𝜋

ℎ
(−𝑚 ∗ 𝑠𝑖𝑛2(

𝜋𝑧

ℎ
) + 𝑐𝑜𝑠

𝜋𝑧

ℎ
)𝑒𝑚cos  (

𝜋𝑧

ℎ
))𝑑𝑧     

𝑧𝑘

𝑧𝑘−1
𝑁
𝑘=1  

Substituting equations of virtual strain (14-23) into Eq. (26) and in integrating by parts to relative 

virtual displacement (δu , δv , δw), then we get: 

0 = −∫[
𝜕𝑁1

𝜕𝑥
 𝛿𝑢 +

𝑚𝜋

ℎ

𝜕𝑀1

𝜕𝑥
 𝛿Ѳ1 −

𝜕2𝑀1

𝜕𝑥2
𝛿𝑤 +

𝜕𝑃1

𝜕𝑥
𝛿Ѳ1 +

𝜕𝑁2

𝜕𝑦
𝛿𝑣 +

𝑚𝜋

ℎ

𝜕𝑀2

𝜕𝑦
𝛿Ѳ2 −

𝜕2𝑀2

𝜕𝑦2
𝛿𝑤 +

𝜕𝑃2

𝜕𝑦
𝛿Ѳ2 +

𝜕𝑁6

𝜕𝑦
𝛿𝑢 +

𝜕𝑁6

𝜕𝑥
𝛿𝑣 +

𝑚𝜋

ℎ
 
𝜕𝑀6

𝜕𝑦
𝛿Ѳ1 + 

𝑚𝜋

ℎ
 
𝜕𝑀6

𝜕𝑥
𝛿Ѳ2 + 2

𝜕2𝑀6

𝜕𝑥𝜕𝑦
𝛿𝑤 +

𝜕𝑃6

𝜕𝑦
𝛿Ѳ1 +

𝜕𝑃6

𝜕𝑥
𝛿Ѳ2 −

𝑚𝜋

ℎ
𝑄1𝛿Ѳ1 −

𝑚𝜋

ℎ
𝑄2 – 𝐾1𝛿Ѳ1 − 𝐾2𝛿Ѳ2]𝜕𝑥𝜕𝑦                                                                                                                     (27)                                                                                                                                                                                                                                                                                                                                              
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The virtual work done by thermal applied load 𝛿𝑉 is: 

 

 






















































































 dxdy

y

w

x

w
N

y

w
N

x

w
NV T

xy
T
y

T
x 

22

 (28) 

 

4. EQUATIONS OF MOTION 

The Euler-Lagrange equations are determined by substituting Eqs. (27 – 28) into Eq. (24) to derive 

equations of motion as follows: 

δu: 
𝜕𝑁𝑥

𝜕𝑥
+
𝜕𝑁𝑥𝑦

𝜕𝑦
= 0                                                                                                                      (29) 

δv: 
𝜕𝑁𝑦

𝜕𝑦
+
𝜕𝑁𝑥𝑦

𝜕𝑥
= 0                                                                                                                      (30) 

δw: 
𝜕2𝑀𝑥

𝜕𝑥2
+ 

𝜕2𝑀𝑦

𝜕𝑦2
+ 2

𝜕2𝑀𝑥𝑦

𝜕𝑥𝜕𝑦
+





































2

2

2

2

y

w
N

x

w
N T

y
T
x = 0                                                       (31) 

δѲ1: 
𝑚𝜋

ℎ

𝜕𝑀𝑥

𝜕𝑥
+ 

𝑚𝜋

ℎ
 
𝜕𝑀𝑥𝑦

𝜕𝑦
+
𝜕𝑃𝑥

𝜕𝑥
+
𝜕𝑃𝑥𝑦

𝜕𝑦
−
𝑚𝜋

ℎ
𝑄𝑥 − 𝐾𝑥 = 0                                                              (32) 

δѲ2: 
𝑚𝜋

ℎ

𝜕𝑀𝑦

𝜕𝑦
+ 

𝑚𝜋

ℎ

𝜕𝑀𝑥𝑦

𝜕𝑥
+
𝜕𝑃𝑦

𝜕𝑦
+
𝜕𝑃𝑥𝑦

𝜕𝑥
−
𝑚𝜋

ℎ
𝑄𝑦 − 𝐾𝑦 = 0                                                          (33) 

The plane stress reduced stiffness 𝑄𝑖𝑗 is: 

 𝑄11 =
𝐸1

1−𝜈12𝜈21
, 𝑄12 =

𝜈12𝐸2

1−𝜈12𝜈21
  ,  𝑄11 =

𝐸2

1−𝜈12𝜈21,
𝑄66 = 𝐺12 , 𝑄44 =  𝐺23 , 𝑄55 =  𝐺13       (34)                                                                          

Where:  

G12, G23 and G13= shear modulus of plate in planes 12, 23 and 13 respectively. 

E1 and E2 = Young’s modulus in directions 1 and 2 of the plate.  

υ12 and υ21 are poison’s ratio in directions 12 and 21 respectively.  

The transformed stress-strain relation of an orthotropic lamina in a plane state of stress is: 

  {

𝜎𝑥𝑥
𝜎𝑦𝑦
𝜎𝑥𝑦

} = [
𝑄11
𝑄12
𝑄16

𝑄12
𝑄22
𝑄26

𝑄16
𝑄26
𝑄66

] {

𝜀𝑥𝑥 − 𝛼𝑥𝑥∆𝑇
𝜀𝑦𝑦 − 𝛼𝑥𝑥∆𝑇

𝛾𝑥𝑦 − 2𝛼𝑥𝑦∆𝑇
}, {

𝜎𝑦𝑧
𝜎𝑥𝑧

} = [
𝑄44 𝑄45
𝑄45 𝑄55

] {
𝛾𝑦𝑧
𝛾𝑥𝑧
}                                      (35)                                       

The force results are: 
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{
 
 
 
 

 
 
 
 
𝑁𝑥
𝑁𝑦
𝑁𝑥𝑦
𝑀𝑥

𝑀𝑦

𝑀𝑥𝑦

𝑃𝑥
𝑃𝑦
𝑃𝑥𝑦 }

 
 
 
 

 
 
 
 

=

[
 
 
 
 
 
 
 
 
𝐴11
𝐴12
𝐴16

𝐴12
𝐴22
𝐴26

𝐴16
𝐴26
𝐴66

 
𝐵11
𝐵12
𝐵16

𝐵12
𝐵22
𝐵26

𝐵16
𝐵26
𝐵66

 
𝐸11
𝐸12
𝐸16

𝐸12
𝐸22
𝐸26

𝐸16
𝐸26
𝐸66

 
𝐵11
𝐵12
𝐵16

𝐵12
𝐵22
𝐵26

𝐵16
𝐵26
𝐵66

 
𝐷11
𝐷12
𝐷16

𝐷12
𝐷22
𝐷26

𝐷16
𝐷26
𝐷66

 
𝐹11
𝐹12
𝐹16

𝐹12
𝐹22
𝐹26

𝐹16
𝐹26
𝐹66

𝐸11
𝐸12
𝐸16

𝐸12
𝐸22
𝐸26

𝐸16
𝐸26
𝐸66

 
𝐹11
𝐹12
𝐹16

𝐹12
𝐹22
𝐹26

𝐹16
𝐹26
𝐹66

 
𝐻11
𝐻12
𝐻16

𝐻12
𝐻22
𝐻26

𝐻16
𝐻26
𝐻66 ]

 
 
 
 
 
 
 
 

{
 
 
 
 
 

 
 
 
 
 
𝜀𝑥
0

𝜀𝑦
0

𝜀𝑥𝑦
0

𝜀𝑥
1

𝜀𝑦
1

𝜀𝑥𝑦
1

𝜀𝑥
2

𝜀𝑦
2

𝜀𝑥𝑦
2 }
 
 
 
 
 

 
 
 
 
 

                                                              (36)                  

{
 

 
𝑄𝑥
𝑄𝑦
𝐾𝑥
𝐾𝑦}
 

 
= [

𝐴44 𝐴45
𝐴45 𝐴55

 
𝐽44 𝐽45
𝐽45 𝐽55

𝐽44 𝐽45
𝐽45 𝐽55

 
𝐿44 𝐿45
𝐿45 𝐿55

]

{
 
 

 
 𝛾𝑦𝑧

0

𝛾𝑥𝑧
0

𝛾𝑦𝑧
3

𝛾𝑥𝑧
3
}
 
 

 
 

                                                                                        (37) 

{

𝑁𝑥
𝑇

𝑁𝑦
𝑇

𝑁𝑥𝑦
𝑇

} = ∑ ∫ [

𝑄11 𝑄12 𝑄16
𝑄12 𝑄22 𝑄26
𝑄16 𝑄26 𝑄66

] {

𝛼𝑥𝑥
𝛼𝑦𝑦
2𝛼𝑥𝑦

} ∆𝑇𝑑𝑧
𝑧𝑘+1

𝑧𝑘
𝑁
𝑘=1                                                                (38) 

Where:𝐴𝑖𝑗 = ∫ 𝑄𝑖𝑗

ℎ

2
−ℎ

2

𝑑𝑧    𝑖 = (1,2,4,5,6)                                                                                   (39)   

(𝐵𝑖𝑗, 𝐷𝑖𝑗 , 𝐸𝑖𝑗) = ∫
𝑄𝑖𝑗(𝑧, 𝑧

2, 𝑠𝑖𝑛 (
𝜋𝑧

ℎ
)𝑒𝑚𝑐𝑜𝑠  (

𝜋𝑧

ℎ
),

ℎ

2
−ℎ

2

    (i, j=1, 2, 6)                                               (40)   

 (𝐹𝑖𝑗, 𝐻𝑖𝑗) = ∫ 𝑄𝑖𝑗

ℎ

2
−ℎ

2

(𝑠𝑖𝑛 (
𝜋𝑧

ℎ
) 𝑒𝑚𝑐𝑜𝑠  (

𝜋𝑧

ℎ
) ∗ 𝑧, 𝑠𝑖𝑛2(

𝜋𝑧

ℎ
) 𝑒2𝑚𝑐𝑜𝑠  (

𝜋𝑧

ℎ
))       (i, j=1, 2, 6)               (41)        

𝐽𝑖𝑗 = ∫ 𝑄𝑖𝑗

ℎ

2
−ℎ

2

𝜋

ℎ
𝑒𝑚𝑐𝑜𝑠  (

𝜋𝑧

ℎ
)(−𝑚 ∗ 𝑠𝑖𝑛2(

𝜋𝑧

ℎ
) + 𝑐𝑜𝑠

𝜋𝑧

ℎ
)𝑑𝑧                                                              (42)              

𝐿𝑖𝑗 = ∫ 𝑄𝑖𝑗

ℎ

2
−ℎ

2

(
𝜋

ℎ
)
2

𝑒2𝑚𝑐𝑜𝑠  (
𝜋𝑧

ℎ
) (−𝑚 ∗ 𝑠𝑖𝑛2(

𝜋𝑧

ℎ
) + 𝑐𝑜𝑠

𝜋𝑧

ℎ
)
2

𝑑𝑧    𝑖, 𝑗 = (4,5)                             (43)    

 

5. NAVIER’S SOLUTION 
The generalized displacements are expanded in a double trigonometric series in terms of unknown 

parameters in Navier’s method. To satisfy the boundary conditions of the problem, the restricted 

choice of the function in the series is selected.  

Assuming the following displacements form to satisfied simply supported boundary conditions:  

Reddy , 2004. 

𝑢(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑈𝑚𝑛 𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠(𝛽𝑦) 
∞
𝑛=1

∞
𝑚=1                                                                     (44)  
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𝑣(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑉𝑚𝑛  𝑐𝑜𝑠(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦) 
∞
𝑛=1

∞
𝑚=1                                                                          (45) 

𝑤(𝑥, 𝑦, 𝑡) = ∑ ∑ 𝑊𝑚𝑛 𝑠𝑖𝑛(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦)
∞
𝑛=1

∞
𝑚=1                                                                          (46) 

 𝜃1(𝑥, 𝑦, 𝑡) = ∑ ∑  𝜃1𝑚𝑛 𝑠𝑖𝑛(𝛼𝑥) 𝑐𝑜𝑠(𝛽𝑦) 
∞
𝑛=1

∞
𝑚=1                                                                     (47) 

𝜃2(𝑥, 𝑦, 𝑡) = ∑  ∑   𝜃2𝑚𝑛 𝑐𝑜𝑠(𝛼𝑥) 𝑠𝑖𝑛(𝛽𝑦) 
∞ 
𝑛=1

∞
𝑚=1                                                                    (48)                                                                                                                                                                             

Where: α =
𝑚𝜋

ℎ
 ,  𝛽 =

𝑛𝜋

ℎ
 (𝑈𝑚𝑛, 𝑉𝑚𝑛,𝑊𝑚𝑛,  𝜃1𝑚𝑛, 𝜃2𝑚𝑛), are arbitrary constants. 

6. EIGNVALUE PROBLEM 
Equations of motion Eqs. (29-33) can be expressed in terms of displacements by substituting the 

force and moment resultants from Eqs. (36 - 38) and using Eqs. (44-48), result an eignvalue as 

following: 

(

  
 

[
 
 
 
 
 
𝑐11 𝑐12 𝑐13 𝑐14 𝑐15

𝑐22 𝑐23 𝑐24 𝑐25
𝑐33−𝛼2𝑁𝑥𝑇−𝛽2𝑁𝑦𝑇−𝛼𝛽𝑁𝑥𝑦𝑇  𝑐34 𝑐35

𝑐44 𝑐45
𝑐55]
 
 
 
 
 

)

  
 
{𝑑} = 0                                                     (49) 

Where:{𝑑𝑖𝑗} = {𝑈𝑚𝑛, 𝑉𝑚𝑛,𝑊𝑚𝑛,  𝜃1𝑚𝑛, 𝜃2𝑚𝑛}                                                                                                                                                                                                 

And 𝐶𝑖𝑗  is the element of stiffness, from which the critical buckling temperature for the plate can 

be obtained. 

 

7. RESULTS AND DISCUSSION 
Using above analytical solutions of the HOSDT based on displacement field given by [Mantari et 

al], 2011, a computer program is built using MATLAB15 programming for thermal buckling of 

laminated angle ply composite plates. The parametric effect of side to-thickness ration (a/h), plate, 

aspect ratio a/b, modulus ratio E1/E2 and thermal expansion coefficient ratio (α2/ α1) on critical 

buckling temperature of laminated composite plates are analyzed. To verify the suggested above 

solution, obtained results are compared with three dimension elasticity theory proposed by ,Noor, 

1992, which give good agreement with maximum discrepancy (7.4 %) for ten layers of anti 

symmetric angle ply with different thickness ratio (a/h) and different angles as shown in Table 1.  

Also, as compared with first-order thick plate theory proposed by ,Chen and Liu], 1993, for anti 

symmetric six layers angle ply [45/-45] plate, as listed in Table 2. with maximum discrepancy (9.4 

%). 

Changing of aspect ratio effect on critical buckling temperature of ten layers laminated thick and 

thin antisymmetric plates, are listed in Table 3. Which show that critical temperature decreases as 

aspect ratio (a/b) increases, also it decrease with increasing (a/h) ratio which effected critical 

temperature larger than (a/b) ratio. Different critical thermal buckling modes for plates with 

different aspect ratio for [45 -45]2 angle-ply square plate are shown in Figs. 1-3. For these three 

figures the normalized critical temperature is (T*cr = T* α1*10*(b/h)2) and material properties are, 

E1/E2=25, G12=G13=0.5 E2, G23=0.2 E2, (α2/ α1=3), ν12= ν13= ν23=0.25. 
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Tables 4. and 5. show another comparison with  , Chen and Liu , 1993, for antisymmetric 

laminated square thick and moderately thick plate (a/h =10 and a/h = 20) for different aspect ratio 

(b/a), angle orientation (30, 45 and 60) and number of layer (2, 4 and 8) which give closed results 

with maximum discrepancy (3.5 %).    

Table 6. show the effect of changing (E1/E2) on critical temperature for four and eight layers anti 

symmetric angle ply plates for different thickness ratio (a/h), since stiffness increase when 

increasing orthotropic ratio therefore normalized critical temperature increase. 

Effect of thermal expansion coefficient ratio (α2/ α1) on critical buckling temperature of four layer 

laminated thick and thin plates [with different (a/h) ratio], are listed in Table 7. as expected critical 

temperature decrease when (α2/ α1) increase and (a/h) increase since stiffness decrease when plate 

become thinner.  

=15, 2/E1plate, E ply square-) for angle0Normalized critical temperature (Tcr = T* αTable 1. 

=0.015, N = 10.1/ α2=0.3, α12, ν2E =0.335623, G2E =0.513=G12G 

a/h References 

Tcr 

𝛉 = 0° 

(m,n) 

(1,2) 

𝛉 = 15° 

(m,n) 

(1,2) 

𝛉 = 30° 

(m,n) 

(1,1) 

𝛉 = 45° 

(m,n) 

(1,1) 

4 

Present 0.1872 0.2221 - - 

Noor, 1992  0.1777 0.2087 - - 

Discrepancy % 5.3 6.4 - - 

5 

Present 0.1504 0.1849 
0.2554 

(1,2) 
- 

Noor, 1992 0.1436 0.1753 
0.2377 

(1,2) 
- 

Discrepancy % 4.7 5.4 7.4 - 

10 

Present 0.05917 0.08124 0.1125 0.12259 

Noor, 1992 0.05782 0.07904 0.1100 0.1194 

Discrepancy % 2.3 2.7 2.2 2.67 

20 Present 0.01752 0.02552 0.03472 0.03844 
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Noor, 1992 0.01739 0.02528 0.03446 0.03810 

Discrepancy % 0.74 0.94 0.75 0.89 

100 

Present 0.0007465 0.001115 0.001502 0.001674 

Noor 0.0007463 0.001115 0.001502 0.001674 

Discrepancy % 0.026 0 0 0 

 

=21, 1ply square plate, E-) for angle0Normalized critical temperature (Tcr = T*1000* αTable 2. 

.345]-0.21, [45 -=1=16, α 2=0.21, α 13= ν120.639, ν =23=0.65, G13=G12=1.7, G3= E2E 

a/h Chen and Liu, 1993 Present work Discrepancy % 

5 21.3622 19.5369 9.3 

8 12.7542 11.6360 9.6 

10 9.2963 8.4905 9.4 

15 4.7885 4.3836 9.2 

20 2.8523 2.6142 9.1 

30 1.3234 1.2142 8.9 

40 0.7560 0.6939 8.9 

50 0.4874 0.4474 8.9 

80 0.1919 0.1762 8.9 

100 0.1230 0.1129 8.9 
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ply -symmetric layers angle-) for anti0Normalized critical temperature (Tcr = T* αTable 3. 

45], N=10.-=0.015, [45 1/ α2=0.3, α12, ν2E =0.335623, G2E =0.513=G12=15, G2/E1square plate, E 

a/b 
b/h 

5 10 20 100 

1 0.2734 0.1225 0.03844 0.00167 

2 0.1961 0.0738 0.02121 0.00089 

3 0.1670 0.0588 0.01643 0.00068 

4 0.1547 0.0527 0.01454 0.00060 

 

 

 

 

Figure 1.  Normalized Thermal Buckling mode for antisymmetric angle-ply square plate, 

mode(m=1,n=1), No. of layers=4, a/h=5, a/b=1. 
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Figure 2.  Normalized Thermal Buckling mode for antisymmetric angle-ply square plate, 

mode(m=2,n=1), No. of layers=4, b/h=5, a/b=2. 

 

Figure 3.  Normalized Thermal Buckling mode for antisymmetric angle-ply square plate, 

mode(m=4,n=1), No. of layers=4, b/h=5, a/b=4. 
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Table 4. Normalized critical temperature [Tcr = T* α1*10*(b/h)2] for angle-ply plate with 

a/h=10, E1/E2=25, G12=G13=0.5 E2, G23=0.2 E2, ν12=0.25, α2/ α1=3. 

b/a Angle No. of layers 

Tcr 

Discrepancy 

% 

 

Chen 

and 

Liu, 

1993 

Present 

1 

30 

2 4.0600 4.1897 3.1 

4 7.1345 6.9253 3.02 

8 7.7267 7.5925 1.7 

45 

2 4.2070 4.3568 3.5 

4 7.6605 7.4158 3.2 

8 8.3010 8.1519 1.8 

60 

2 4.0600 4.1897 3.1 

4 7.1345 6.9253 3.02 

8 7.7267 7.5925 1.7 

2 

30 

2 2.6431 2.7035 2.2 

4 4.9757 4.8559 2.4 

8 5.4530 5.370 1.5 

45 

2 2.4942 2.5479 2.1 

4 4.8401 4.7158 2.6 

8 5.3240 5.2326 1.7 

60 

2 2.3437 2.3771 1.4 

4 4.3038 4.1977 2.5 

8 4.7266 4.6373 1.9 
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Table 5. Normalized critical temperature [Tcr = T* α1*10*(b/h)2] for angle-ply square plate for 

a/h=20 , E1/E2=25, G12=G13=0.5 E2, G23=0.2 E2, ν12=0.25, α2/ α1=3. 

Angle No. of layers 

Tcr 

Discrepancy 

% 

 

Chen 

and 

Liu, 

1993 

Present 

30 

2 4.7891 4.8461 1.1 

4 9.7366 9.5515 1.9 

8 10.8736 10.6972 1.6 

45 

2 4.9920 5.0503 1.1 

4 10.7342 10.5094 2.1 

8 12.0354 11.8277 1.7 

60 

2 4.7891 4.8461 1.1 

4 9.7366 9.5515 1.9 

8 10.8736 10.6972 1.6 

 

Table 6. Normalized critical temperature (Tcr = T* α0) for different (E1/E2) of angle-ply square 

plate, [45 -45]2 , mode (m=1, n=1), G12=G13= 0.5 E2, G23=0.3356 E2, ν12= 0.3, α2/ α1=0.015, . 

a/h 

N=4 N=8 

2/E1E 2/E1E 

10 15 25 40 10 15 25 40 

5 0.2244 0.2524 0.2748 0.2766 0.2402 0.2711 0.2953 0.2972 

10 0.08793 0.11009 0.1389 0.1597 0.09635 0.1215 0.1535 0.1759 

20 0.02567 0.03395 0.04709 0.06065 0.0284 0.0380 0.0532 0.06872 

100 0.00108 0.001468 0.002128 0.002915 0.001208 0.00165 0.00243 0.0033 
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Table 7. Effect of (α2/ α1) on normalized critical temperature Tcr for [45/-45]2 angle-ply square 

plate, mode (m=1, n=1), E1/E2=25, G12=G13=0.5 E2, G23=0.2 E2, ν12= ν13= ν23=0.25. 

a/h 

 Tcr 

)1/ α2(α N = 4 

4 

2 0.016466 

4 0.014978 

6 0.013736 

8 0.012685 

10 0.011783 

10 

2 0.007784 

4 0.007080 

6 0.006493  

8 0.005996 

10 0.005570 

100 

2 0.000127 

4 0.000115 

6 0.000106 

8 0.000098 

10 0.000091 
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8. CONCLUSIONS 

Thermal buckling analysis of angle ply composite thick and thin plates is developed by using new 

displacement field developed by ,Mantari et al, 2011, but with changing a parameter ‘‘m’’, to 

‘m=.05’ then obtained results are well agree with 3D elasticity theory solution and other plate 

solution methods. As expected critical temperature is decreased as thickness ratio and aspect ratio 

increased while the buckling temperature decreases with the increase of thermal expansion 

coefficient ratio α2/ α1 and is larger for thick, than thin laminates. 

thermal buckling mode of simply supported angle-ply plate does not change according to this 

displacement field.  
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