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ABSTRACT

Critical buckling temperature of angle-ply laminated plate is developed using a higher-order

displacement field. This displacement field used by Mantari et al based on a constant “‘m’’, which
is determined to give results closest to the three dimensions elasticity (3-D) theory. Equations of
motion based on higher-order theory angle ply plates are derived through Hamilton' s principle,
and solved using Navier-type solution to obtain critical buckling temperature for simply supported
laminated plates. Changing (a2/ a1) ratios, number of layers, aspect ratios, E1/E> ratios for thick
and thin plates and their effect on thermal buckling of angle-ply laminates are studied in detail. It
is concluded that, this displacement field produces numerical results close to 3-D elasticity theory
with maximum discrepancy (7.4 %).
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1. INTRODUCTION

Laminated composite plates are used widely in aeronautical, marine and mechanical industries as
well as in other fields of modern engineering structures , those structure are often subjected to
thermal load especially aircraft, launch vehicle and missiles structures, which may cause buckling
of structure with certain boundary conditions, therefore there are many investigations about
thermal buckling.

Thangaratnam, 1989. used finite element method using semiloof elements to analyze critical
buckling temperature for composite laminates under thermal load. The equation of motion for
critical temperature is obtained by equating the second variation of total potential energy to zero.
Different boundary condition for cross-ply and angle-ply symmetric and antisymmetic stacking
are analyzed. Chang and Leu, 1991. studied thermal buckling of antisymmetric angle-ply
laminated simply supported subjected to uniform thermal load using higher order deformation
theory which account for transverse shear and transverse normal strain to obtain exact-closed form
solution. Obtained results are compared with first-order shear deformation theory and Reddy’s
higher-order shear deformation theory and showed surprising discrepancies exist. Chen, et al,
1991, implemented finite element method to analyze thermal buckling temperature of composite
plates under uniform or nonuniform thermal load. Thermal-elastic Mindlin plate theory is used by
which the transverse shear deformation and rotatory inertia were taken into account. Meyers and
Hyer, 1991, used Rayleigh-Ritz formulation to obtain thermal buckling and post buckling
response of symmetrically laminated composite plates. Two different laminates with two types of
simply supported edges, fixed and sliding are investigated. Uniform temperature change along
these laminates thickness is considered. Noor and Burton, 1992, Presented three-dimensional
analytical solution for thermal buckling multilayered angle-ply composite plates with temperature-
dependent thermo elastic properties. The temperature is assumed to be independent of the surface
coordinates, but has symmetric variation along plate thickness. Noor, et al , 1992, studied buckling
of laminated plates under combined thermal and axial loadings. Multi parameter-reduction method
based on a first-order shear deformation theory, in connection with mixed finite-element is
developed to study the effect of different lamination and material parameters on stability of the
plate. Noor, et al , 1992, developed three-dimensional elasticity solutions for the critical buckling
temperature of composite plates. The pre buckling deformations are taken into account. Chen and
Liu], 1993, used first-order plate theory to analyze thermal buckling of angle-ply composite plates
subjected to a uniform temperature change with Levy-type boundary conditions. Prabhut and
Dhanaraj, 1994, analyzed thermal buckling of symmetric cross-ply and antisymmetric angle-ply
laminated composite plates subjected to uniform temperature distribution using finite element
method which based on the first order shear deformation theory. Matsunaga, 2006, investigated
thermal buckling of angle-ply laminated composite and sandwich plates based on two-dimensional
global higher order shear deformation theory. Fundamental governing equations are derived by
the principle of virtual work and solved using power series expansion of continuous displacement
components for simply supported laminated composite and sandwich plates. Shiau et al , 2010,
studied thermal buckling behavior of composite laminated plates by using finite element method.
The results indicate that the higher thermal buckling mode shapes are formed when the laminates
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produce higher bending rigidity along the fiber direction and higher in-plane compressive force in
a direction perpendicular to the fiber direction. Shi et al], 2010, studied nonlinear thermal post
buckling of antisymmetric angle-ply composite plates subjected on mechanical and thermal loads
using finite element formulation. Bourada et al , 2011, used a new four-variable refined plate
theory for thermal buckling analysis of functionally graded material (FGM) sandwich plates. The
thermal loads are assumed as uniform, linear, and nonlinear temperature rises across the thickness
direction. Abdul-Majeed , 2011, investigated thermal buckling of isotropic thermo elastic thin
plates using governing differential equation and the Rayleigh-Ritz method. Three types of thermal
distribution have been considered these are: uniform temperature, linear distribution and non-
linear thermal distribution across thickness. Naji , 2013, investigated critical buckling temperature
of cross-ply and angle-ply composite laminated plate using classical laminated and higher order
shear deformation plate theory. Equations of motion are solved using Navier and Levy methods
for symmetric and anti-symmetric laminated plates. Singh, 2014, presented thermal buckling
behavior of laminated composite curved panel embedded with shape memory alloy fiber based on
higher order shear deformation plate theory. Variational principle with finite element modeling
under uniform temperature loading is used to obtain the responses. Cetkovic and Gyorgy , 2016,
analyzed thermal buckling of angle-ply laminates using Generalized Layer wise Plate Theory.
Element stiffness matrix and geometric stiffness matrix are derived based on finite element
formulation. Cetkovic , 2016, studied thermal buckling of composite plates using new version of
Layer wise. From the strong form, analytical solution is derived based on Navier's type, while the
weak form is analyzed using the isoperimetric finite element approximation. Chen, et al], 2016,
investigated Vibration and buckling behavior of initially stressed and thermally stressed composite plate
using variation method. The temperature is assumed uniform and linearly distributed through the
plate thickness. Ounis and Belarbi , 2017, studied the thermal buckling behavior of laminated
plates with rectangular cutouts using classical plate theory as a base for finite element method.
Vescovini et al , 2017, used Ritz-based variable-kinematic formulation to study thermal buckling
of composite plates and sandwich panels. They represented structure by means of sub laminates.
Critical temperatures obtained were for, with and without accounting for the pre-buckling. Xing
and Wang , 2017, concerned the critical buckling temperature of functionally graded rectangular
thin plates. Closed form solutions for the critical thermal parameter are obtained for the plate with
different boundary conditions under uniform, linear and nonlinear temperature fields using
separation-of-variable method.

In present work, critical temperature of simply supported composite plate is obtained using high
order shear deformation theory of plate based on displacement field used by Mantari et al , 2011
Effect of many thin and thick plate parameters, such as aspect ratio, E1/E> ratio, ay/ a1 ratio for
antisymmetric angle ply are investigated-

2. DISPLACEMENT AND STRAIN

In present work, critical thermal temperature of simply supported angle ply laminated plate, based
on new higher order theory is obtained using displacement field proposed by ,Mantari et al ,
2011:

u(x,y,2) =u(xy) - z (52) + f(26:(x,y) (1)
v(63,2) = v@y) — 2 G+ [(2)b:(x.) 2
w(x,y,7) = w(x,y) ®)
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Where:

U, (6, ), v, (x,y), wo(x,v),0:(x,y),0,(x,y), 6, (x,y) are the five unknown displacements of
middle surface of the plate.

f(z) is a shape functions to develop transverse shear strains and then stresses distribution along
plate thickness.

For free boundary conditions at the top and bottom surfaces of the plate, the new proposed
displacement field is, Mantari et al, 2011:

d , nz
u(x,v,z) =u,(x,y) + z (%91 - %) + sm%emcos (%) 0, (4)
d . nz
v(x,y,2) = v,(x,y) + z (%92 — %) + sm%emCOS (h)Hz (5)
W(xryr Z) = WO (6)
Where: f(z) = sin%emCOS (%) + yz ,where, y = % , = constant (7)

The strain-displacement relations are, Reddy, 2004.

u v ow

Exx = P Eyy = 5 y Egp = = (8,9 and 10)
1/0u av 1 1 /0u ow 1

Exy —5(5+£) = SVxy s Exz —5(54'5) = Vxz (11and 12)
1 /dv ow 1

& =55+ 5,) = 0 (13)

Substituting Egs. (4-6) into Eqgs. (8-13) to get the strain associated with the displacement field as
follow:

exx = %« + Zelxx + Sin % e (%)ezxx (14)

ey =&y + zelyy + sin % e (%) &y (15)
Yy = 0% +Zely + sin % e s (%) %y (16)
Yxz = €% + (—m * sin? (%)Jrcos %) % e s (%)83)(2 (17)
Wz =%, + (—m * sin? (%)chos %) %emcos (%)83),2 (18)

Where:
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( mmdd; 97w

P h dx, 0x2 20
(2N | oo ( 961 ]
Exx I ox I Exx mnod, 9w Exx 0x
o | _ ou ¥ 1 [ _ h 9y  dy?2 2 (| _ 4 96, ¥
ej(,)y = 4 ™ , syly = 20, | mr 06, > ejgy = N (19,20 and 21)
Yy La_u + a_vJ Vxy h 0xy h oy Yxy 99, + &J
y y 32w ax dy
\ B dxdy J
0 T 3
Y m—6; Y 6
{ g} _ { n } | { g} _ {@1} (22 and 23)
sz m;@z sz 2

3. PRINCIPLES OF VIRTUAL WORK

The equations of motion will be derived depending on the new higher order theory using the
Hamilton’s principles ,Reddy, 2004.

0= [ 6U+6V (24)

Where: 6U is the virtual strain energy

h
5U=[f§{f§ Oxx® €55 + 0y, 068, + 04,06k, + 0,668, + 0,,6¢),] 0xdy}0z] = 0 (25)

6U = f(N16 SJ(C)X + Ml(gé‘,%x + P158§x + N268:8y + M25£31,y + P26£32,y + N66€)?y + M65€)1(y

+PsSegy + Qr0¢e), + ky0e5, + Q16¢e0, + ki6ed,—)0xdy = 0 (26)

Where, (Ni, Mi, Pi, Qi and Kj) are the load results from the following integration:

(Ni, Mi, Pi) = 1fk .0 (1 z, sin hZ emcos( )> dz (i=1,2,6)
(Q1, K1)=X¥ 1fk 1 05 (1 (—m * sin (—)+c s )emcoS (%))dz

(Q2, K2)= X% 1fk 1 4(1 (—m * sin?(= )+cos )emcoS (%))dz

Substituting equations of virtual strain (14-23) into Eq. (26) and in integrating by parts to relative
virtual displacement (Su , v , dw), then we get:

6M1 aMZ

0=—[[32 su+2T20 50, - T2 5w + 2250, + 22 5v + 22 22 5, - T2 s +
"’P2592+"’”65 +a”65 + 0 "’M6561+"‘” aMﬁ<sez+2 © Sw +6P6591 +5200;

aM6

100



Number 12 Volume 25 December 2019 Journal of Engineering

2 2
v =[INT ol W) i NT o] S|+ NE ol 2 | 2 ) L axay
by oxX oy OX oy (28)

4. EQUATIONS OF MOTION
The Euler-Lagrange equations are determined by substituting Egs. (27 — 28) into Eq. (24) to derive
equations of motion as follows:

(ONx | ONxy
ou: TE =2 = 0 (29)
LONy | ONxy _
ov: X+ =0 (30)
. azMx aZMy 62Mxy T 82W T aZW _
mm oMy | mm OMyy | OPy | OPxy mm o
001 h o0x h 0y dx dy h Qx Kx =0 (32)
Lmr My | mnOMey  (OFy (0P _mm _ ko=
06 h dy h  ox dy dx h Qy Ky = 0 (33)

The plane stress reduced stiffness Q;; is:

Eq _ vk

E;
QlZ

1-v12V21,

Qu = , Qi1 = Qes = G12, Qaa = G23, UQs5 = G3 (34)

1—V1Vaq' T 1-viva
Where:
G12, Goz and Giz= shear modulus of plate in planes 12, 23 and 13 respectively.
E1 and E2 = Young's modulus in directions 1 and 2 of the plate.
v12 and v21 are poison's ratio in directions 12 and 21 respectively.
The transformed stress-strain relation of an orthotropic lamina in a plane state of stress is:
Oxx Exx — OxxAT
) < origian] ) s —aer | oy« [0 2 o
Q16026066 \ Yy — 205y AT 45 S50

The force results are:

Oyxy
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Ny (&)
Nx A11412416 B11B12B16 E11E12E16 £
y A12422426 B12B22B26 E12E22E 6 0
Nxy A16426A66 B16B26Bs6 E16E26E 66 3x1y
M, B11B12B16 D11D12D16 F11Fi2Fig | | x

{ My b =| By13B33Byg D13D32Do6 FioFayFas |} €5 ¢
M,y B16B26Be6 D16D26Ds6 Fi6F26F66 Exy
P, E11E12E 6 F11F12F16 HinHipHie | | o2
P, E12E7Er6 FiaFooFog HizHypHyg ;;
\ Py / LE16E26E66 FieF26F66 Hi6H26Hes - Zy

Qx Aps AssJas  us (VJ(’)Z\
le _ Aus AssJas  Iss !V;?z L
Jaa  Jas Laa  Lys | )/fz |

) Jas  Jss Las  Lss b,x32)

T
N’;ﬂ S+ Q11 Q12 Q6] Fxx
Ny t =381 |Qz Q22 Qae|y %y {ATdz
Ny, Q16 Q26 Qeel\2xy

h
Where:Aij = fi QU dz i= (1,2,4‘,5,6)
2

(Bij, Dij,

h

(Fij'Hij) = fé Qij (Sin (%) oM cos (%) " z,sinz(%) echos (

2
h
(2 0. ™05 (F) (o« sin? (%2 nz
Jij = _ThQUhe h)(—m* sin (h)+cosh)dz

nz

2019

h 2 . .z, mcos (2
Ey) = 3, Qu(Z 27 sinGre &), (i, j=1, 2, 6)

Journal of Engineering

(i,J=1, 2, 6)

h 2 2
Lij = J2Qy (%) g2meos (%) (—m * sinz(%) + cos %) dz 1i,j = (4,5)
2

5. NAVIER’S SOLUTION

(36)

(37)

(38)

(39)

(40)

(41)

(42)

(43)

The generalized displacements are expanded in a double trigonometric series in terms of unknown
parameters in Navier’s method. To satisfy the boundary conditions of the problem, the restricted

choice of the function in the series is selected.

Assuming the following displacements form to satisfied simply supported boundary conditions:

Reddy , 2004.

u(x, y,t) = Yim=12n=1Unn sin(ax) cos(By)
102
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v(X,y,t) = Xin=1 Xin=1 Vinn cos(ax) sin(By) (45)
w(x,y,t) = Xm=1Xn=1 Wnn sin(ax) sin(By) (46)
01(x,y, 1) = Xin=1Zn=1 O1,,,, Sin(ax) cos(By) (47)
02(%,¥,t) = Xin=1 Ln=1 b2p, cos(ax) sin(By) (48)

Where: o = % B = "7” (U Vs Winn, 61,, 6. ), are arbitrary constants.

6. EIGNVALUE PROBLEM

Equations of motion Eqgs. (29-33) can be expressed in terms of displacements by substituting the
force and moment resultants from Eqgs. (36 - 38) and using Eqgs. (44-48), result an eignvalue as
following:

[C11 C12 C13 C14 C15]
/| C22 C23 C2a  Cas|
1
| I C33-a2NT-B2NT-aBNT, C34 C35| {d}=0 (49)

|
\l Caq C45J/
Cs5
Where:{dij} = {Umn' an' Wmn' Blmn’ Bzmn}

And C;; is the element of stiffness, from which the critical buckling temperature for the plate can
be obtained.

7. RESULTS AND DISCUSSION

Using above analytical solutions of the HOSDT based on displacement field given by [Mantari et
al], 2011, a computer program is built using MATLAB15 programming for thermal buckling of
laminated angle ply composite plates. The parametric effect of side to-thickness ration (a/h), plate,
aspect ratio a/b, modulus ratio E1/E2 and thermal expansion coefficient ratio (a2/ a1) on critical
buckling temperature of laminated composite plates are analyzed. To verify the suggested above
solution, obtained results are compared with three dimension elasticity theory proposed by ,Noor,
1992, which give good agreement with maximum discrepancy (7.4 %) for ten layers of anti
symmetric angle ply with different thickness ratio (a/h) and different angles as shown in Table 1.
Also, as compared with first-order thick plate theory proposed by ,Chen and Liu], 1993, for anti
symmetric six layers angle ply [45/-45] plate, as listed in Table 2. with maximum discrepancy (9.4
%).

Changing of aspect ratio effect on critical buckling temperature of ten layers laminated thick and
thin antisymmetric plates, are listed in Table 3. Which show that critical temperature decreases as
aspect ratio (a/b) increases, also it decrease with increasing (a/h) ratio which effected critical
temperature larger than (a/b) ratio. Different critical thermal buckling modes for plates with
different aspect ratio for [45 -45]. angle-ply square plate are shown in Figs. 1-3. For these three
figures the normalized critical temperature is (T cr = T* a1*10*(b/h)?) and material properties are,

E1/E2=25, G12=G13=0.5 E2, G23=0.2 E>, (a2/ 01=3), v12= v13= v23=0.25.
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Tables 4. and 5. show another comparison with , Chen and Liu , 1993, for antisymmetric
laminated square thick and moderately thick plate (a/h =10 and a/h = 20) for different aspect ratio
(b/a), angle orientation (30, 45 and 60) and number of layer (2, 4 and 8) which give closed results
with maximum discrepancy (3.5 %).

Table 6. show the effect of changing (E1/E2) on critical temperature for four and eight layers anti
symmetric angle ply plates for different thickness ratio (a/h), since stiffness increase when
increasing orthotropic ratio therefore normalized critical temperature increase.

Effect of thermal expansion coefficient ratio (o2/ a1) on critical buckling temperature of four layer
laminated thick and thin plates [with different (a/h) ratio], are listed in Table 7. as expected critical
temperature decrease when (a/ a1) increase and (a/h) increase since stiffness decrease when plate
become thinner.

Table 1. Normalized critical temperature (Tcr = T* ao) for angle-ply square plate, E1/E>=15,
G12=0G13=0.5 E2, G23=0.3356 E2, v12=0.3, a2/ a1=0.015, N = 10.

Ter
0=0° 0 =15° 0 =30° 0 =45°
a/h References
(m,n) (m,n) (m,n) (m,n)
(1,2) (1,2) (1,1) (1,1)
Present 0.1872 0.2221 - -
4 Noor, 1992 0.1777 0.2087 - -
Discrepancy % 5.3 6.4 - -
0.2554
Present 0.1504 0.1849 -
(1,2)
5 0.2377
Noor, 1992 0.1436 0.1753 -
(1,2)
Discrepancy % 4.7 54 7.4 -
Present 0.05917 0.08124 0.1125 0.12259
10 Noor, 1992 0.05782 0.07904 0.1100 0.1194
Discrepancy % 2.3 2.7 2.2 2.67
20 Present 0.01752 0.02552 0.03472 0.03844
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Noor, 1992 0.01739 0.02528 0.03446 0.03810
Discrepancy % 0.74 0.94 0.75 0.89
Present 0.0007465 0.001115 0.001502 0.001674
100 Noor 0.0007463 0.001115 0.001502 0.001674
Discrepancy % 0.026 0 0 0

Table 2. Normalized critical temperature (Tcr = T*1000* ao) for angle-ply square plate, E1=21,
Eo= E3=1.7, G12=G13=0.65, G23= 0.639, vio=v13 =0.21, 02 =16, a1=-0.21, [45 -45]a.

a/h Chen and Liu, 1993 Present work Discrepancy %
5 21.3622 19.5369 9.3
8 12.7542 11.6360 9.6
10 9.2963 8.4905 9.4
15 4.7885 4.3836 9.2
20 2.8523 2.6142 9.1
30 1.3234 1.2142 8.9
40 0.7560 0.6939 8.9
50 0.4874 0.4474 8.9
80 0.1919 0.1762 8.9
100 0.1230 0.1129 8.9
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Table 3. Normalized critical temperature (Tcr = T* ap) for anti-symmetric layers angle-ply
square plate, E1/E>=15, G12=G13=0.5 E, G23=0.3356 E2, v12=0.3, a2/ 01=0.015, [45 -45], N=10.

b/h
alb
5 10 20 100
1 0.2734 0.1225 0.03844 0.00167
2 0.1961 0.0738 0.02121 0.00089
3 0.1670 0.0588 0.01643 0.00068
4 0.1547 0.0527 0.01454 0.00060
— 1
{09
Ty {08
0.8 4 - {07
% 06 4 /""/’o,:':::':’:f},' 106
T W
B 04+ / 05
=
02 0.4
0.3
0.l
6 0.2

0.1

2 2

Width of plate 0 o Legth of plate

Figure 1. Normalized Thermal Buckling mode for antisymmetric angle-ply square plate,
mode(m=1,n=1), No. of layers=4, a/h=>5, a/b=1.
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—1
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1 ~N
10.6
10.4
0.5 h RN
e
S s 102
= e 3
T o0
o)
e}
§ SRR
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AT
-0.5 4 ‘
S
-1 N
4
Width of plate 0 o0

Legth of plate

Figure 2. Normalized Thermal Buckling mode for antisymmetric angle-ply square plate,
mode(m=2,n=1), No. of layers=4, b/h=5, a/b=2.

— 1
10.8
1 10.6
05 104
5 10.2
T o
()]
©
@]
=
-0.5
-1 N
6
2 10
5
Width of plate 0 o

Legth of plate

Figure 3. Normalized Thermal Buckling mode for antisymmetric angle-ply square plate,
mode(m=4,n=1), No. of layers=4, b/h=5, a/b=4.
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Table 4. Normalized critical temperature [Tcr = T* a1*10*(b/h)?] for angle-ply plate with
a/h=10, E1/E2=25, G12=G13=0.5 E2, G23=0.2 E2, v12=0.25, a2/ 01=3.

Ter
Discrepanc
b/a Angle No. of layers (;rr]]zn (yf '
Liu, Present
1993

2 4.0600 4.1897 3.1

30 4 7.1345 6.9253 3.02

8 7.7267 7.5925 1.7

2 4.2070 4.3568 3.5

1 45 4 7.6605 7.4158 3.2
8 8.3010 8.1519 1.8

2 4.0600 4.1897 3.1

60 4 7.1345 6.9253 3.02

8 7.7267 7.5925 1.7

2 2.6431 2.7035 2.2

30 4 4.9757 4.8559 2.4

8 5.4530 5.370 1.5

2 2.4942 2.5479 2.1

2 45 4 4.8401 4.7158 2.6
8 5.3240 5.2326 1.7

2 2.3437 23771 1.4

60 4 4.3038 41977 2.5

8 4.7266 4.6373 1.9
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Table 5. Normalized critical temperature [Tcr = T* a1*10*(b/h)?] for angle-ply square plate for
a/h=20 , E1/E2=25, G12=G13=0.5 E2, G23=0.2 E2, v12=0.25, a2/ 01=3.

Ter
Discrepanc
Chen (yp y
Angle | No.oflayers | ., 0
. Present

Liu,

1993
2 47891 4.8461 1.1
30 4 9.7366 9.5515 1.9
8 10.8736 | 10.6972 1.6
2 4.9920 5.0503 1.1
45 4 10.7342 10.5094 2.1
8 12.0354 | 11.8277 1.7
2 47891 4.8461 11
60 4 0.7366 9.5515 1.9
8 10.8736 | 10.6972 1.6

Table 6. Normalized critical temperature (Tcr = T* ao) for different (E1/E2) of angle-ply square
plate, [45 -45]2, mode (m=1, n=1), G12=G13= 0.5 E2, G23=0.3356 E3, v12= 0.3, 02/ 01=0.015, .

N=4 N=8
a’/h Ei/E2 Ei/E2
10 15 25 40 10 15 25 40
5 | 0.2244 | 0.2524 0.2748 0.2766 0.2402 | 0.2711 | 0.2953 | 0.2972
10 | 0.08793 | 0.11009 | 0.1389 0.1597 | 0.09635 | 0.1215 | 0.1535 | 0.1759
20 | 0.02567 | 0.03395 | 0.04709 | 0.06065 | 0.0284 | 0.0380 | 0.0532 | 0.06872
100 | 0.00108 | 0.001468 | 0.002128 | 0.002915 | 0.001208 | 0.00165 | 0.00243 | 0.0033
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Table 7. Effect of (a2/ a1) on normalized critical temperature Tcr for [45/-45]. angle-ply square
plate, mode (m=1, n=1), E1/E>=25, G12=G13=0.5 E2, G23=0.2 E3, v12= v13= v23=0.25.

Ter
a/h
(02/ ) N=4
2 0.016466
4 0.014978
4 6 0.013736
8 0.012685
10 0.011783
2 0.007784
4 0.007080
10 6 0.006493
8 0.005996
10 0.005570
2 0.000127
4 0.000115
100 6 0.000106
8 0.000098
10 0.000091
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8. CONCLUSIONS

Thermal buckling analysis of angle ply composite thick and thin plates is developed by using new
displacement field developed by ,Mantari et al, 2011, but with changing a parameter ‘‘m’’, to
‘m=.05" then obtained results are well agree with 3D elasticity theory solution and other plate
solution methods. As expected critical temperature is decreased as thickness ratio and aspect ratio
increased while the buckling temperature decreases with the increase of thermal expansion
coefficient ratio a2/ oz and is larger for thick, than thin laminates.

thermal buckling mode of simply supported angle-ply plate does not change according to this

displacement field.
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