Electrical, Electronics and communications, and Computer Engineering

Securing Physical Layer for FHSS Communication System Using Code and Phase Hopping Techniques in CDMA, System Design and Implementation

Saifuldeen A. Mohammed *
Lecture
Electrical Engineering Department /University of Baghdad
Baghdad/Iraq
saifuldeen@uob.edu.iq

ABSTRACT

The Frequency-hopping Spread Spectrum (FHSS) systems and techniques are using in military and civilian radar recently and in the communication system for securing the information on wireless communications link channels, for example in the Wi-Fi 8.02.X IEEE using multiple number bandwidth and frequencies in the wireless channel in order to hopping on them for increasing the security level during the broadcast, but nowadays FHSS problem, which is, any Smart Software Defined Radio (S-SDR) can easily detect a wireless signal at the transmitter and the receiver for the hopping sequence in both of these, then duplicate this sequence in order to hack the signal on both transmitter and receiver messages using the order of the sequences that will be recognized for next transmissions. In 2017 Code and Phase Hopping Techniques are both proposed to resolve the most recent problem in security-related, but not with FHSS, therefore in this paper presents a new composed proposed system will progress Phase Shift and Code Hopping in Code Division Multiplexing Access (CDMA) to complement with FHSS; because the wireless Communications systems security in the last years became a nightmare for some individuals, also companies, and even countries, also join them needing for higher bits rate in the wireless channels; because of next-generation communication system 5G-6G and the evolution in social networking, IoT, stream media, IoE, visualizations, and cloud computing. The new ideas can be applicable for a large number of users, also fast implementation without synchronization, as well as without any focus on encryption or keys-exchanges, at completion all results are simulation in MATLAB R2017b, the results have been tested by using 8 users in the same time, also our results showing promises effects on security for both applied systems Phases Shift and Codes Hopping especially the Code Hopping, therefor; our results encouraged us to complete research and compare our system with other.

Keywords: FHSS, CDMA, Orthogonal Matrix, CHSS, PSHSS.
تأمين الطبقة المادية لنظام اتصالات FHSS باستخدام شفرة وتكنولوجيا القفز الطوري، تصميم النظام والتنفيذ

سيف الدين عبد الأمير محمد
عميد قسم الهندسة الكهربائية، جامعة بغداد

الخلاصة

تستخدم أنظمة وتقنيات طيف انتشار الترددات (FHSS) في الاتصالات اللاسلكية، وتحديداً Wi-Fi 8.02 IEEE، عن طريق استخدام عرض النطاق الترددي متعدد الأرقام والترددات في الفصيلة اللاسلكية، أو حسب المناهج الحالية، أو من خلال استخدام FHSS (C-CHSS)، أي أن يكون للigator معرف بالبرامج الذكية (S-SDR) بسهولة اكتشاف إشارة للاتصال اللاسلكية عند جهاز الإرسال وجهز المستقبل لتسهيل التقليل من أمان أنظمة الاتصالات اللاسلكية. في السنوات الأخيرة، يمكن اكتشاف إشارة لاسلكية عند جهاز الإرسال وجهاز الاستقبال، مما يجعلها شائعة في الشبكات الاجتماعية، ونظام الاتصالات، ووسائل الاتصالات، وسرعة الإنترنت، والعديد من الحالات الأخرى. يُعتقد أن الأفكار الجديدة قابلة للتطبيق على عدد كبير من المستخدمين، وكذلك التنفيذ في كلاهما，请忽略部分文字转述
\[F_{\text{hss}}(t) = A \times \cos(2\pi f_d h(t) + \theta) \]

(3)

where \(f_d \) is functionality for frequency of wave signal, \(h(t) \) is function of hopping frequency also, hopping frequency \(h(t) \) is a function of \(h_i \), in which \(h_i \) mentions to function of spreading frequency sequence, as given by both agreement between transmitter and receiver as shown in Eq. (4):

\[h(t) = \sum_{i=-\infty}^{\infty} h_i \delta(t - iT_d) \]

(4)

Figure 1. The FHSS System Block Diagram (Widiyatmoko et al., 2018).

Communicating system and network raise day after day and become more fast also the security (Mohammed et al., 2006), (Mohammed, 2007) therefor; FHSS is a secure techniques, day after day become more useful in different uses in both civilian and military use, like Wi-Fi8.02X (IEEE Standard, 1997) (Vermeer, 1997) (Chayat and Breeze, 1996) and even in radar, but these days, FHSS be so vulnerable in security (Mototolea, et al., 2020) a new Smart Software Defines Radio (S-SDR), If we using it correctly ways, and If we have a smart receiver for al so (or most) for all bandwidth channels in a frequency hopping spread spectrum scheme; then we can see and recording then hear like unencrypted traffic. In SDR collection procedure, the transmitter must transmit long enough for all channels that will hopping in it, then we can collect all the frequencies to program into our receivers which is will be of course another smart SDR. there for, from above the FHSS become predictable system for its sequence order time in all next transmissions and traffic data link messaging (Mototolea, et al., 2020) (White, et al., 2019).

In the year 2017 a paper provide new novel technique on title “Phase Shift Hopping and Code Hopping in complex CDMA or JCDMA” (Mohammed, 2007) it was proposed to adding or enhancing the security progressively more by actual simple algorithm without adding any hardware stages in the old CDMA system, in further words, the Phase Shift Hopping (PSH) and Code Hopping (CH) together work just excellent without slightylargest modification in the old scheme or in bits rate and bit error rate, in other words good SNR/BER.

Moreover, in this paper, we will need this new novel system (Mohammed, 2017) (CH and PSH compacted JCDMA) to adding with FHSS, what is more for this; since today data communications systems and networks having new task in their privacy traffic and cybersecurity consequently, similarly needing a new securing systems with ultra-high bits rate, with growing in number of users and beside narrow or limited bandwidth for authorization license frequencies aimed at
hopping in FHSS; which are further and further become major needing in ours current modern life (Mohammed, 2017), and for that it can be proposed systems that using a limitation authorization licenses frequencies or bandwidths (This is will reached in several technique like by communicated a lot users with similar frequencies and/or in same time), one of methods is TDMA (Time Division Multiplexing Access) and more successful method CDMA (Code Division Multiplexing Access) or complex CDMA (JCDMA) and MC-CDMA (Multi Carrier for Code Division Multiplexing Access) for example OFDM-CDMA (CDMAsignal companies with Orthogonal Frequency Division Multiplexing) (Mohammed, 2017), (Mohammed, 2011).

Additionally, there in 2011 and 2014 a paper deliver operating MQPSK and MQAM with in DS-CDMA which is stand for (Direct Sequence CDMA) so-called JCDMA (Mohammed, 2011), (Jassim et al., 2014), the central main idea was the liberal JCDMA outputs earned complex bits rate as showed in Fig. 1, where in the finalephase, the system will work as analog system not in digital procedure, and it can be transmitter as analog wireless waves single with boundless bits rates like any analog transmitter system, for example Frequency Modulation sine and cosine waves or can be work with Orthogonal Frequency Division Multiplexing (OFDM) scheme in other words as communicating analog signal to transfer digital data. Also we will try in this paper, introduce a novel new physical layer for FHSS to transmit digital data, to ensure its security when data transmission and receive, also our new scheme probable to be smart from or through the change procedure of transmitter regularly or randomly, without any growing the number of stages or make more processing, this will guarantee the speed of the system not be reduced, this proposed system well be include mathematically proving for all equations.

To prove the orthogonality for any matrix (Seberry, 1983), (Mohammed, 2012), it is must had to multiply this matrix by its transpose conjugate and checkered whether the product is real numbers or a multiple scalar on the identity matrix or if we have matrix A was square matrix and its diminution mxm (Mohammed, 2012) then [M]mxm is orthogonal matrix if:

\[M_m \times M_m^{\ast T} = K \ast I_m \]

Anywhere “k” here is a constant number plus there any matrix “in this case square matrix”, for example the most well-known orthogonal matrices besides the real and complex numbers for its elements, are Walsh Hadamard Matrix (WH\(_m\)) and the Fast Fourier transform matrix (FFT\(_m\)) multiplication matrix for “mxm”, Based on Eq. (1) that result from equations above, the inverse reversing matrix used for [WH]\(_m\) and [FFT]\(_m\) is given by (Jassim et al., 2014), (Seberry, 1983), (Mohammed, 2012), (Pushnitski et al., 2008), (Beauchamp, 1984):

\[
\text{WH}^{-1} = \frac{\text{WH}_m^T}{k} \]
\[
\text{FFT}^{-1} = \frac{\text{FFT}_m^T}{k}
\]

(6a)

(6b)
Where “m” goes on here to be the dimension of the square matrix that in this condition. Therefor the here issue will be, if the orthogonal matrix makes slight to extreme shift rotating in phase for all numbers or elements belong to the matrix as the same if the matrix will be orthogonal or not? Thus, this will proof our new tow properties in last research works (Mohammed, 2017), (Mohammed, 2012) able to applied here intended for our novel proposal scheme, then the property will be as following from paper (Mohammed, 2017):

Theorem 1: If X is any orthogonal not square matrices with real and complex elements, with dimension mxn, and all elements of $X: X \rightarrow \mathbb{Z}$ are, then any rotating shifting all elements by the same any angle will be not square orthogonal matrix too, with scalar number, where \mathbb{Z}: including the vectors numbers it are all the set for complex numbers. afterward:

Theorem 1.1 (special form): If X is any orthogonal square matrices with real and complex elements, with dimension mxm, and all elements of $X: X \rightarrow \mathbb{Z}$ are, then any rotating shifting all elements by the same any angle will be square orthogonal matrix too, with scalar number, where \mathbb{Z}: including the vectors numbers it are all the set for complex numbers. (Mohammed, 2017)

To see proof the theorem above, can see (Mohammed, 2017), (Mohammed, 2012), the key to it, it is we must persuade the orthogonal matrix’s parts elements to Euler’s equation formula for all elements in the matrix:

The Proof: We have that matrix $[X_m]$ orthogonal square matrix and can representing as:

$$[X]_{m \times m} = \begin{bmatrix} x_{1,1} & \cdots & x_{1,m} \\ \vdots & \ddots & \vdots \\ x_{m,1} & \cdots & x_{m,m} \end{bmatrix}$$

(7)

Where $x_{1,1} = r_{1,1}e^{i\theta_{1,1}}, \ldots, x_{m,m} = r_{m,m}e^{i\theta_{m,m}}$ and so on then switching all elements to Euler’s equation formula:

$$[X]_{m \times m} = \begin{bmatrix} r_{1,1}e^{i\theta_{1,1}} & \cdots & r_{1,m}e^{i\theta_{1,m}} \\ \vdots & \ddots & \vdots \\ r_{m,1}e^{i\theta_{m,1}} & \cdots & r_{m,m}e^{i\theta_{m,m}} \end{bmatrix}$$

(8)

$$[X]_{m \times m}^T = \begin{bmatrix} r_{1,1}e^{-i\theta_{1,1}} & \cdots & r_{m,1}e^{-i\theta_{1,m}} \\ \vdots & \ddots & \vdots \\ r_{1,m}e^{-i\theta_{m,1}} & \cdots & r_{m,m}e^{-i\theta_{m,m}} \end{bmatrix}$$

(9)

Then any act on shifting for all elements to $[X]_{m \times m}$ by the consistent angle “0” will be:

$$[X]_{m \times m}^{\pm \theta} = \begin{bmatrix} r_{1,1}e^{i(\theta_{1,1} \pm \theta)} & \cdots & r_{1,m}e^{i(\theta_{1,m} \pm \theta)} \\ \vdots & \ddots & \vdots \\ r_{m,1}e^{i(\theta_{m,1} \pm \theta)} & \cdots & r_{m,m}e^{i(\theta_{m,m} \pm \theta)} \end{bmatrix} = \begin{bmatrix} r_{1,1}e^{i\theta_{1,1} e^{\pm i\theta}} & \cdots & r_{1,m}e^{i\theta_{1,m} e^{\pm i\theta}} \\ \vdots & \ddots & \vdots \\ r_{m,1}e^{i\theta_{m,1} e^{\pm i\theta}} & \cdots & r_{m,m}e^{i\theta_{m,m} e^{\pm i\theta}} \end{bmatrix}$$

194
\[e^{\pm i\theta} = \begin{pmatrix} r_{1,1} e^{i\theta_{1,1}} & \cdots & r_{1,m} e^{i\theta_{1,m}} \\ \vdots & \ddots & \vdots \\ r_{m,1} e^{i\theta_{m,1}} & \cdots & r_{m,m} e^{i\theta_{m,m}} \end{pmatrix} \]

(10)

But then again, the inverse for \(X \) shifting by constant \(\theta \) for all elements belong \([X]\) will be:

\[e^{\pm i\theta} [X]_{mxm}^T = e^{\pm i\theta} \begin{pmatrix} r_{1,1} e^{-i\theta_{1,1}} & \cdots & r_{1,m} e^{-i\theta_{1,m}} \\ \vdots & \ddots & \vdots \\ r_{m,1} e^{-i\theta_{m,1}} & \cdots & r_{m,m} e^{-i\theta_{m,m}} \end{pmatrix} = \begin{pmatrix} r_{1,1} e^{i(-\theta_{1,1})} & \cdots & r_{1,m} e^{i(-\theta_{1,m})} \\ \vdots & \ddots & \vdots \\ r_{m,1} e^{i(-\theta_{m,1})} & \cdots & r_{m,m} e^{i(-\theta_{m,m})} \end{pmatrix} \]

(11)

And \(e^{\pm i\theta} [X]_{mxm} \times e^{\pm i\theta} [X]_{mxm}^T = e^{\pm 2i\theta} [I]_{mxm} \) or \(e^{\pm i\theta} [X]_{mxm}^{-1} = e^{\pm i(-\theta)} [A X]_{mxm}^T / k \). Where: \(x_{mxm} \) is \(X \) elements, \(r_{m,m} \) is the distance from origin or the radius of the unity circle, \(K \) is a constant and \([I]_{mxm}\) is identical matrix.

At hand, for the last equations evidence which is “if any shifting in phases for all elements to any orthogonal matrix is even so or will be orthogonal matrix too, but with adding together a constant as multiply number equal \((e^{\pm \theta}) \)” then the next section will contest the proposed system for using FHSS Phase Hopping with CDMA and complex CDMA the “JCDMA” for sample (but it can be used in OFDM and any digital communication similar to M-QAM), it will be adding together this feature asynthesis for fine-tuning radio station!!

Following our derivatizing equations over, now and immediately we will must be discovery informal and innovative procedure for produce orthogonal matrices in different dimensions for using in Code Hopping Spared Spectrums with FHSS (CHSS) since the olden methods are very complex and problematic to calculate in real time processing even in current computers, swell that and since orthogonal matrices can be used in several different applications, for example similar to image processing and wireless 3G communications (in CDMA or OFDM or together).

Therefore; in this paper, we represent how our novel method generate and finding various orthogonal matrices through applying tensor products among several orthogonal matrices, tow or more, in both formication, real and complex numbers for matrix’s elements, with affecting it in telecommunication (Jassim et al., 2013), (Mohammed, 2012), then Code Hopping with FHSS Spread Spectrum will be (CHSS) the person who reads will realize on the finishing line of this section that yielded matrices will remain orthogonal matrices too and the processing thru the novel method is actual easy way.

The tensor product in this paper will be Kronecker product, can be useful in different actions like in matrices, vectors, Algebras, topological vector, modules, and spacing calculations……etc., among many other forms or things (Jassim et al., 2013). The most common bilinear trick, in some frameworks, was the tensor product and is additionally referred to as outer matrices product. For linear algebra mapping action for together \([A], [B]\) (represented by matrices here), then, the type of matrix tensor product for two or more matrices and there are many properties for tensor product, but in this paper, will represent
our novel and actual suitable way also its important for create orthogonal code can use for (CHSS) implementation were Theorem 2 and 2.1 describe this way to find many orthogonal matrices using as codes but the full proof for this new theorem can find in both reference (Jassim et al., 2013), (Mohammed, 2012) with all details and opportunity in applications.

Theorem 2 If \(X:Z \rightarrow Z \) and \(Y: Z \rightarrow Z \) are not square orthogonal matrices, so any action through their tensor product by matrix form is given by \((X \otimes Y) = C: Z \rightarrow Z \) the resulting matrix \(C \) will be not square orthogonal too, which is the set for complex numbers including the vectors numbers.

Theorem 2.1 (Special form) If \(X:Z \rightarrow Z \) and \(Y: Z \rightarrow Z \) are square orthogonal matrices, then any action by their tensor product by matrix form is given by \((X \otimes Y) = C: Z \rightarrow Z \) the resulting matrix \(C \) will be square orthogonal too, which is the set for complex numbers including the vectors numbers.

The proof for **Theorem 2.1**, for square matrices, you can see all complete details in the (Jassim et al., 2013) but we have that the full proof here is more useful:

If we have \([A]_{n \times n} = \begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \\ \vdots & \ddots & \vdots \\ a_{n,1} & \cdots & a_{n,n} \end{bmatrix} \) and \([B]_{m \times m} = \begin{bmatrix} b_{1,1} & \cdots & b_{1,m} \\ \vdots & \ddots & \vdots \\ b_{m,1} & \cdots & b_{m,m} \end{bmatrix} \) both orthogonal square matrices then:

\[
[C]_{(n \times m) \times (n \times m)} = [A]_{n \times n} \otimes [B]_{m \times m} = \begin{bmatrix} a_{1,1} \star [B] & \cdots & a_{1,n} \star [B] \\ \vdots & \ddots & \vdots \\ a_{n,1} \star [B] & \cdots & a_{n,n} \star [B] \end{bmatrix}
\]

\[
= \begin{bmatrix}
\begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \end{bmatrix} & \begin{bmatrix} b_{1,1} & \cdots & b_{1,m} \end{bmatrix} \\ \vdots & \ddots & \vdots \\ \begin{bmatrix} a_{n,1} & \cdots & a_{n,n} \end{bmatrix} & \begin{bmatrix} b_{m,1} & \cdots & b_{m,m} \end{bmatrix} \end{bmatrix}
\end{bmatrix} = \begin{bmatrix}
\begin{bmatrix} c_{1,1} & \cdots & c_{1,(n \times m)} \end{bmatrix} \\ \vdots \\ \begin{bmatrix} c_{(n \times m),1} & \cdots & c_{(n \times m),(n \times m)} \end{bmatrix} \end{bmatrix}
\]

where \(c_{1,1} = a_{1,1} \star b_{1,1} \ldots \ldots \)

(13)

While we right now having \(A^T \otimes B^T = (A \otimes B)^T = C^T \), so we need proof that \(C^T C = k I = k \)

\[
[I]_{(n \times m) \times (n \times m)} = [C]_{(n \times m) \times (n \times m)} \times [C]_{(n \times m) \times (n \times m)}^T =
\]

\[
([A]_{n \times n} \otimes [B]_{m \times m}) \times ([A]_{n \times n}^T \otimes [B]_{m \times m}^T) =
\]

\[
= \begin{bmatrix}
\begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \end{bmatrix} & \begin{bmatrix} b_{1,1} & \cdots & b_{1,m} \end{bmatrix} \\ \vdots & \ddots & \vdots \\ \begin{bmatrix} a_{n,1} & \cdots & a_{n,n} \end{bmatrix} & \begin{bmatrix} b_{m,1} & \cdots & b_{m,m} \end{bmatrix} \end{bmatrix} \times \begin{bmatrix}
\begin{bmatrix} a_{1,1} & \cdots & a_{1,n} \end{bmatrix}^T & \begin{bmatrix} b_{1,1} & \cdots & b_{1,m} \end{bmatrix}^T \\ \vdots & \ddots & \vdots \\ \begin{bmatrix} a_{n,1} & \cdots & a_{n,n} \end{bmatrix}^T & \begin{bmatrix} b_{m,1} & \cdots & b_{m,m} \end{bmatrix}^T \end{bmatrix}
\end{bmatrix}
\]

(14)

196
\[
\begin{align*}
\begin{bmatrix}
 a_{1,1} \cdot b_{1,1} & \cdots & b_{1,m} \\
 \vdots & \ddots & \vdots \\
 b_{m,1} & \cdots & b_{m,m}
\end{bmatrix}
\begin{bmatrix}
 a_{1,1} \cdot b_{1,1} & \cdots & b_{1,m} \\
 \vdots & \ddots & \vdots \\
 b_{m,1} & \cdots & b_{m,m}
\end{bmatrix}
&= \begin{bmatrix}
 a_{n,1} \cdot b_{1,1} & \cdots & b_{1,m} \\
 \vdots & \ddots & \vdots \\
 b_{m,1} & \cdots & b_{m,m}
\end{bmatrix}
\begin{bmatrix}
 b_{1,1} & \cdots & b_{1,m} \\
 \vdots & \ddots & \vdots \\
 b_{m,1} & \cdots & b_{m,m}
\end{bmatrix}
\end{align*}
\]

Buthere, we take the first row to the \([C]\) then once again, then we will get new equation:

\[
k \cdot 1 = a_{1,1} a_{1,1}^* (b_{1,1} b_{1,1}^* + b_{1,2} b_{1,2}^* \ldots \ldots b_{1,m} b_{1,m}^*)
\]

\[
+ a_{1,2} a_{1,2}^* (b_{1,1} b_{1,1}^* + b_{1,2} b_{1,2}^* \ldots \ldots b_{1,m} b_{1,m}^*) + \ldots \ldots
\]

\[
+ a_{1,n} a_{1,n}^* (b_{1,1} b_{1,1}^* + b_{1,2} b_{1,2}^* \ldots \ldots b_{1,m} b_{1,m}^*)
\]

\[
k \cdot 1 = \sum_{i=1}^{n} (a_{1,i} * a_{1,i}^*) * \sum_{j=1}^{m} (b_{1,j} * b_{1,j}^*)
\]

(15)

For thereason directly above, \([B]\) will be orthogonal after that:

\[
(b_{1,1} b_{1,1}^* + b_{1,2} b_{1,2}^* \ldots \ldots b_{1,m} b_{1,m}^*) = \sum_{j=1}^{m} (b_{1,j} * b_{1,j}^*) = 1 \text{ or } k_2 \quad \text{(If Not } = 0)\]

then the equations will be:

\[
\sum_{i=1}^{n} \left(a_{1,i} * a_{1,i}^* \right) * \sum_{j=1}^{m} (b_{1,j} * b_{1,j}^*) = (1 \text{ or } k_2) \sum_{i=1}^{n} (a_{1,i} * a_{1,i}^*)
\]

(16)

and for the reason over, \([A]\) will be orthogonal too, so the equation will be present at this point:

\[
\sum_{i=1}^{n} (a_{1,i} * a_{1,i}^*) = (1 \text{ or } k_1) \quad \text{(If Not } = 0)\]; thus:

\[
\sum_{i=1}^{n} \left(a_{1,i} * a_{1,i}^* \right) * \sum_{j=1}^{m} (b_{1,j} * b_{1,j}^*) = (1 \text{ or } k_2) * (1 \text{ or } k_1) = k
\]

(17)

For the second row for \([C]\) will be present at this point as:

\[
0 = a_{2,1} a_{2,1}^* (b_{1,1} b_{1,1}^* + b_{1,2} b_{1,2}^* \ldots \ldots b_{1,m} b_{1,m}^*)
\]

\[
+ a_{2,2} a_{2,2}^* (b_{1,1} b_{1,1}^* + b_{1,2} b_{1,2}^* \ldots \ldots b_{1,m} b_{1,m}^*) + \ldots \ldots
\]

\[
+ a_{2,n} a_{2,n}^* (b_{1,1} b_{1,1}^* + b_{1,2} b_{1,2}^* \ldots \ldots b_{1,m} b_{1,m}^*)
\]

For the second row for \([C]\) will be present at this point as:
\[0 = \sum_{i=1}^{n} \left((a_{2,i} + a_{1,i}^*) \right) \sum_{j=1}^{m} (b_{1,j} * b_{1,j}^*) \]
\[(19) \]

Since \[\sum_{j=1}^{m} (b_{1,j} * b_{1,j}^*) = (1 \text{ or } k^2) \] but \[\sum_{i=1}^{n} (a_{2,i} + a_{1,i}^*) = \begin{cases} 0 & \text{if } t \neq 1 \\ 1 & \text{if } t = 1 \end{cases} \] thus:

This is extremely favored property for orthogonally utilized to the matrices; consequently \([C] \) will be orthogonal square, as shown below:

\[k[I]_{(n+m) \times (n+m)} = \begin{bmatrix} c_{1,1} & \cdots & c_{1,(n+m)} \\ \vdots & \ddots & \vdots \\ c_{(n+m),1} & \cdots & c_{(n+m),(n+m)} \end{bmatrix} \times \begin{bmatrix} c_{1,1}^* & \cdots & c_{1,(n+m)}^* \\ \vdots & \ddots & \vdots \\ c_{(n+m),1}^* & \cdots & c_{(n+m),(n+m)}^* \end{bmatrix} \]
\[(20) \]

where \(c_{1,1} = a_{1,1} * b_{1,1} \ldots \)

This ending the proof

\[\]

2. EQUATIONS AND FORMATTING PHASE SHIFT HOPPING, CODE HOPPING AND JCDMA IN FHSS

Primary, JCDMA (Complex numbers mapping Code Division Multiple Access) its spiritual and standpoint identical to making a special exclusive label for every user’s customer info data in the network subcript; to guarantee at demodulation and success the info data will be not stiff to the users, putting users information while the equations under, where in Fig. 2 the serial to parallel is \(1: K_{1} \) (Mohammed, 2011), next our equations in (Mohammed, 2011) will be if \(P_{N} \) and \(JPN_{n} \) for all users is equally to one, will be as below:

\[[\text{CODE}] = \begin{bmatrix} \text{Code}_1 \\ \text{Code}_2 \\ \vdots \\ \text{Code}_n \end{bmatrix}, \text{ and: } [\text{CODE}].[\text{CODE}]^{T} = [I]_{n \times n} \]
\[(21) \]

\[\text{Code}_n = \{C_{(n,m)}\}^{L}_{m=1} \]
\[(22) \]

\[d_{cn} = U_{n}P_{N} \text{Code}_{n} = U_{n}P_{N} \{C_{(n,m)}\}^{L}_{m=1} = U_{n} \{C_{(n,m)}\}^{L}_{m=1} \]
\[(23) \]

\[d_{A} = \sum_{k=0}^{n-1} U_{P}P_{N} \text{Code}_{k} = \sum_{k=0}^{n-1} U_{P}^{G}P_{N}^{G} \{C_{(k+1,m)}\}^{L}_{m=1} = \sum_{k=0}^{n-1} U_{P}^{G} \{C_{(k+1,m)}\}^{L}_{m=1} \]
\[(24) \]

And since Eq. 22, 23 and 24 it is can here transmitter many chips packages and the total sum can be representative as such as a series notation as Eq. 24, if the user number of data chips for messages are here is \((G) \) or sequence for time (Mohammed, 2011), (Jassim et al., 2014) so Eq. 24 will be revision such as:

\[d_{G}^{A} = \sum_{k=0}^{n-1} U_{P}^{G}P_{N}^{G} \text{Code}_{k} = \sum_{k=0}^{n-1} U_{P}^{G}P_{N}^{G} \{C_{(k+1,m)}\}^{L}_{m=1} = \sum_{k=0}^{n-1} U_{P}^{G} \{C_{(k+1,m)}\}^{L}_{m=1} \]
\[(25) \]

As from above in Eq. 25 it is can reached lowest bandwidth for one chip in Eq. 23 and 24, the parameter requirement stand in the improperly smallest length or \(d_{A} \) must be smallest model and that can stand if and only if \(\text{Code}_{k} \) remain in the minimum; yet it is so rigid and difficult to create and originates smallest code, in this situation must remain orthogonal and only if the length of it will be at least equal to number of users, therefor the condition equation designed
for JCDMA will stand equally Eq. 25 and 26 (Mohammed, 2011), (Jassim et al., 2014) the equal as below with (JPN_n=1):

\[d_A^G = \left\{ \sum_{k=0}^{n-1} U_q K G_{Code_k} \right\}_1^G = \left\{ \sum_{k=0}^{n-1} U_q K G_{\left\{ C_{(k+1,m)} \right\}_{m=1}^L} \right\}_1^G \] \hspace{1cm} (26)

Where at this point in Eq. 26, \(U_q K = \{2^nQAMor2^nQPSK\} \) (n: is serial to parallel ratio through 1/n ratio). The future systems for JCDMA are accomplished, and how easy can be programing from several factor and features, the receiver will be at this point as the end user or for further general form as the down link scheme, or it is be able as with PN_k=1 for all (k) or (users):

\[d_A^G = \{\sum_{k=0}^{n-1} d_A^G_{Code_k}\} = \left\{ \sum_{k=0}^{n-1} U_k PN_k \left\{ C_{(k+1,m)} \right\}_{m=1}^L \right\} \ast \left\{ C_{(h,m)} \right\}_{m=1}^L \] \hspace{1cm} (27)

If we want the receiver and the Eq. 27 as Fig.2 to work properly for demodulation all signals for whichever user in Eq. 27, it is be required to meet the condition as in Eq. 28 below:

\[\sum_{m=1}^{L} \left\{ C_{(k+1,m)} \right\}_{m=1}^L \ast \left\{ C_{(h,m)} \right\}_{m=1}^L = \begin{cases} 1 \text{ or constant} & \text{if } k + 1 = h \\ 0 & \text{if } k + 1 \neq h \end{cases} \] \hspace{1cm} (28)

Figure 2. The CDMA & JCDMA with CH & PSHWhere: \(\hat{d_A} = d_A + n(t) \). (Mohammed, 2017).
The Phase Hopping will be applied by Eq. 10 to Eq. 11 and the block diagram for the all system will see in Fig. 3 where Control for Phase Shifting and Code Hopping, and the Code Hopping will be used by Eq. 12 to Eq. 20 with deference orthogonal Codes similar to Wavelet group and Slentlet and so on, see references (Jassim et al., 2013), (Mohammed, 2012) exactly how to create a lot of orthogonal metrics and applied as Codes for requesting in DS-JCDMA. Table 1 Shows most variables that can be programmable, and that will compare with same old system and with both Phasing Shift and Code Hopping Speared Spectrum but in same settings below, in the Table 1, it is clearly as of the table, it can get our scheme with great security if all schemes Frequency Hopping Speared Spectrum (FHSS) and both with PSH, CH combined gather together.

3. THE SUGGESTED SCHEME FOR FHSS COMBINED WITH CH AND PSH

The Fig. 3 and Table. 1 will introduce our novel scheme with its parameters and features, that will be intended to FHSS with PSH and CH although moreover with CDMA therefor we will rename as PSHSS, CHSS.

Fig. 3 explains the system that we previously proposed in this paper, all user data will be work as input for complex CDMA which is clearly described in (Mohammed, 2011), additionally in Fig. 2 which is have PSH and CH controllers parameters also we will use Eq. 25 for modulation and Eq. 27 for demodulation with, of certainly, Eq. 1 where u(t) will be here DS-JCDMA data as shown below in Eq. 29 where both Fhss(t) and c(t) find in Eq. 3 and Eq. 2 respectively.

\[
d_{A2}(t) = \left\{ \sum_{k=0}^{n-1} U_q \frac{G}{G} \left\{ C_{(k+1,m)} \right\}_{m=1}^{L} \right\} \cdot c(t). Fhss(t) \tag{29}
\]

Table 1. Shows the variation of our parameters will work in this paper, While, Fig. 4 will explain the Fhss(t) function sequence order time behavior which is will be random (Shin, H., et al., 2019) (Dvornikov, et al., 2019) for example in this paperwork {1,3,8,6,4,5,2,7} and the 16QAM will use for all user and the packetsize will be 512. The test and resulting will transmitted over Additive White Gaussian Noise in wireless Channel (AWGN). Below is Table 1. which may find useful.

Figure3. The Block diagram of the new proposed system.
Figure 4. Suggest Random FHSS Sequence Hopping Time Order Proposed.

Table 1. The parameters and its type, that desire be experiment in test “programming factors”.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Hopping Numbers per packet</td>
<td>8</td>
</tr>
<tr>
<td>2 Hopping Sequence</td>
<td>Randomly generation = {1, 3, 8, 6, 4, 5, 2, 7}</td>
</tr>
<tr>
<td>3 Phase Hopping difference</td>
<td>$\Theta=0.1\pi, 0.2\pi, \ldots \pi$ and $-\Theta=0.1\pi, 0.2\pi, \ldots \pi$</td>
</tr>
<tr>
<td>4 Number of users</td>
<td>WCDMA = 8</td>
</tr>
</tbody>
</table>
| 5 Transform, for Code Hopping Where here (C) for complex number matrix and (R) for real number matrix for code hopping. | 1- Walsh-Hadamard (W8), (R)
2- Wavelet Transform matrix Dub28x8 (R)
3- Slantlet transform matrix SLT8x8, (R)
4- Safe matrix (ρS_8), (C)
5- Complex-Wavelet filtermatrix (WSafe2) 8x8, (C)
6- Fourier matrix FFT8x8, (C) |
| 6 Chips number for single packet | 8 |
| 7 Total Number of bits/packets | 8^6(Number of bits/users/chip) No. of packet = 512 each time |
| 8 Channel model | AWGN. |
| 9 Binary Modulation for all user | 16QAM |
| 10 Analog Modulation ways | FHSS |
Figure 6. BER/SNR Performance for FHSS with PSHSS in CDMA using Walsh Hadamard transform as Code with always zero phase different in receiver.

Figure 7. BER/SNR Performance for FHSS with CHSS using Walsh Hadamard transform as Code with always zero phase different in transmitter and receiver transform code.
4. CONCLUSIONS AND DISCUSSION FOR FIGURES RESULTS

All figures The foremost Result as shown will be exposed to the viewer that, it imaginable to make the new scheme that proposed FHSS and PH or CH , the results above compare between the Phase Hopping and Code hopping in DS-JCDMA with FHSS in Additive White Gaussian Noise (AWGN) wireless channel, therefore the results enlighten that the Code Hopping with FHSS (CH-FHSS) is extra protected from the Phase Shift Hopping with FHSS (PSH-FHSS), and we can using together systems if its requirement extra protected scheme in the same time exclusive of growing physical layer.

Since Fig. 6 to Fig. 7, it can be considerate that in the primary CH-FHSS is equivalent FHSS without CH, but it is furthermore protected and secure, when transmitting the wireless data. Also reviewer noticeably, from Fig. 6, which from it can be seen that from the results above, the outcome of shifting in phase angle will be few in to transmitted and some outcome more effect and so on when the Phase Shifting are increase there for the result acceptable and accumulations supplementary safety for this ourscheme.

Similarly, from Fig. 7 it realized that the using CH by changing transforms code in the transmitter and in the receiver but with orthogonal code instead on Walsh Hadamard in CDMA at the transmitter and by defaulting similarly Walsh Hadamard in the receiver. For example, Wavelet Transform matrix, Slantlet transform matrix, Safe matrix, Complex-Wavelet Transform matrix (WSafe2) and Fourier matrix FFT. The system’s parameters at the Table 1. is programmable for customize techniques as imperative and as we will use in the future.

From figures above that the results at Fig. 6 and Fig. 7 for the proposal scheme, it been realizing that it can be increasing bit rate not including expanding bandwidth for everyone “users” or single user split up.

Conclusively, It can be gotten that since the results exceeding, the proposed scheme can be functioned with orthogonal matrix as code with complex numbers elements and orthogonal matrix with real number elements, which is mostly likely one, and that actual significant and respectable for having extra security in CH for physical layer if using Theorem 2 and Theorem 2.1 from as presented in outcome for Fig. 7. The signal receiver SNR toward number of BER for the new scheme is acceptable at 16QAM (DS-JCDMA) on the AWGN wireless channel, therefor we are inspired to continue the research.

The new proposed system which is use in this paper pilot bits in addition using type channel estimator together with channel compensating, the result have being inspired us, and we sages to use each above for WiFi or LTEA system integrated with JCDMA to improve security and BER to SNR. In the end as shown above, we have a system possible work like synthesized radio in both the code, the phase and frequency jointly without any complexity in one system, for many users with same bandwidth.
REFERENCES

- Jennifer Seberry, 1983. On Orthogonal Matrices with Constant Diagonal” *Department of Applied Mathematics, University of Sydney*, Sydney, Australia.

• Saifuldeen A. Mohammed, April 2011, Proposed System to Increase the Bits rate for User in the Chip packet using Complex number in Code Division Multiplexing Access and Pseudo Noise (JCDMA and JPN)”, *Published in the proceeding of the Second Scientific Conference of Electrical Engineering University of Technology* 4-5 CE13 pp 200-211. Iraq

