A Five Variable Refined Plate Theory For Thermal Buckling Analysis Uniform And Nonuniform Of Cross-Ply Laminated Plates
Main Article Content
Abstract
This research is devoted to investigating the thermal buckling analysis behaviour of laminated composite plates subjected to uniform and non-uniform temperature fields by applying an analytical model based on a refined plate theory (RPT) with five unknown independent variables. The theory accounts for the parabolic distribution of the transverse shear strains through the plate thickness and satisfies the zero-traction boundary condition on the surface without using shear correction factors; hence a shear correction factor is not required. The governing differential equations and associated boundary conditions are derived by using the virtual work principle and solved via Navier-type analytical procedure to obtain critical buckling temperature. Results are presented for: uniform and linear cross-ply lamination with symmetry and antisymmetric stacking, simply supported boundary condition, different aspect ratio (a/b), various orthogonality ratio (E1/E2), varying ratios of coefficient of uniform and linear thermal expansion (α2⁄α1), uniform and linearly varying temperature thickness ratio (a/h) and numbers of layers on thermal buckling of the laminated plate. It can be concluded that this theory gives good results compared to other theories.
Article Details
Section
How to Cite
References
• Chen, W. J., Lin, P. D., and Chen, L., W., 1991. Thermal buckling behavior of thick composite laminated plates under nonuniform temperature distribution, Computers and Structures, 41(4), pp. 637-645. DOI: 10.1016/0045-7949(91)90176-M
• Shi, S. H., Hayashi, Y., Petralia, R. S., Zaman, S. H., Wenthold, R. J., Svoboda, K., and Malino W, R., 1999. Thermal post-buckling of composite plates using the finite element modal coordinate method, Journal of Thermal Stresses, 22(6), pp. 595-614, DOI: 10.1080/0149 57399280779
• Mansour, M., Mohieddin, Ghomshei, and Amin, Mahmoudi, 2010. Thermal buckling analysis of cross-ply laminated rectangular plates under nonuniform temperature distribution: A differential quadrature approach, Journal of Mechanical Science and Technology, 24(12), pp. 2519-2527, DOI: 10.1007/s12206-010-0918y
• Le-Chung, Shiau, Shih-Yao Kuo, and Cheng-Yuan, Chen, 2010. Thermal buckling behavior of composite laminated plates. Composite Structures, 92(2), pp. 508-514. DOI: 10.1016/j.com pstruct.2009.08.035.
• Jameel, A. N., Sadiq, I. A. and Nsaif, Hasanain, I., 2012. Buckling Analysis of Composite Plates under Thermal and Mechanical Loading, Journal of Engineering, 18, November, pp. 1365–90.
• Bourada, M., Tounsi, A., Houari, M. S. A., and Bedia, E. A. A., 2012. A new four-variable refined plate theory for thermal buckling analysis of functionally graded sandwich plates, Journal of Sandwich Structures and Materials, 14(1), pp. 5-33, DOI: 10.1177%2F1099636211426386
• Fazzolari, F. A., Banerjee, J. R., and Boscolo, M., 2013. Buckling of composite plate assemblies using higher order shear deformation theory—An exact method of solution, Thin-Walled Structures, 71, pp 18-34, DOI: open access.city.ac.UK/id/Eprint/14990.
• Fazzolari, F. A., and E., Carrera, 2014. Thermal Stability of FGM Sandwich Plates Under Various Through-the-Thickness Temperature Distributions, Journal of Thermal Stresses, 37(12), pp. 1449-1481, DOI: 10.1080/01495739.2014.937251
• Cetkovic, M., 2016. Thermal buckling of laminated composite plates using layerwise displacement model, Composite Structures,142, pp. 238–253. DOI: 10.1016/j.compstruct.2016.01.082
• Xing, Y., and Wang, Z., 2017. Closed form solutions for thermal buckling of functionally graded rectangular thin plates, Applied Sciences, 7(12), pp. 1256, DOI: 10.3390/ app7121256
• Vescovini, R. et al., 2017. Thermal buckling response of laminated and sandwich plates using refined 2-D models, Composite Structures, 176, pp. 313–328. DOI: 10.1016/j.compstruct.2017.05.021.
• Sadiq, I. A., and Majeed, W., 2019. Thermal buckling of angle-ply laminated plates using new displacement function, Journal of Engineering, 25(12), pp. 96–113. DOI: 10.31026/j.eng .2019.12.08.
• Narayan, D., A., M, G., B, P. and M., H., 2019. Investigation of thermo-elastic buckling of variable stiffness laminated composite shells using finite element approach based on higher-order theory. Composite Structures, 211, pp. 24–40. DOI: 10.1016/j.compstruct.2018.12.012
• Emmanuel, Nicholas, P., Dharmaraja, C., Sathya Sofia, A., and Vasudevan, D., 2019. Optimization of laminated composite plates subjected to nonuniform thermal loads, Polymers and Polymer Composites,27(6), pp. 314-322, DOI: 10.1177%2F0967391119846242
• Balakrishna, Adhhikari, and B., N., Singh, 2020. Buckling characteristics of laminated functionally graded CNT-reinforced composite plate under nonuniform uniaxial and biaxial in-plane edge loads, International Journal of Structural Stability and Dynamics, 20(2), pp. 2050022, DOI: 10.1142/S0219455420500224
• Kim, S.E., Thai, H.T., and Lee, J., 2009. A two variable refined plate theory for laminated composite plates, Composite Structures, 89( 2), pp.197–205, DOI.:10.1016/j.compstruct. 2008.07.017
• Reddy, J. N., 2003. Mechanics of Laminated Composite Plates and Shells, Mechanics of Laminated Composite Plates and Shells. DOI: 10.1201/b12409.