Numerical Study for the Tube Rotation Effect on Melting Process in Shell and Tube Latent Heat Energy Storage LHES System

Main Article Content

Mohammed Ibrahim Fathi
Munther Abdullah Mussa

Abstract

Although renewable energy systems have become an interesting global issue, it is not continuous either daily or seasonally. Latent heat energy storage (LHES) is one of the suitable solutions for this problem. LHES becomes a basic element in renewable energy systems. LHES compensate for the energy lack when these systems are at low production conditions. The present work considered a shell and tube LHES for numerical investigation of the tube rotation influence on the melting process. The simulation and calculations were carried out using ANSYS Fluent software. Paraffin wax represents the phase change material (PCM) in this work, while water was selected to be the heat transfer fluid (HTF). The calculations were carried out for 9 rpm tube rotation case as well as the stationary case. The results show a slight increase in the liquid content of phase change material PCM due to tube rotation. The enhancement percentage in liquid content was 3.5% for 6 hrs charging process. The heat transfer in the axial direction was small relative to that in the radial direction.

Article Details

How to Cite
“Numerical Study for the Tube Rotation Effect on Melting Process in Shell and Tube Latent Heat Energy Storage LHES System” (2021) Journal of Engineering, 27(11), pp. 75–96. doi:10.31026/j.eng.2021.11.06.
Section
Articles

How to Cite

“Numerical Study for the Tube Rotation Effect on Melting Process in Shell and Tube Latent Heat Energy Storage LHES System” (2021) Journal of Engineering, 27(11), pp. 75–96. doi:10.31026/j.eng.2021.11.06.

Publication Dates

References

• Agyenim, F., Eames, P. and Smyth, M., 2011. Experimental study on the melting and solidification behaviour of a medium temperature phase change storage material (Erythritol) system augmented with fins to power a LiBr/H2O absorption cooling system, Renewable Energy, Elsevier Ltd, 36(1), pp. 108–117. DOI: 10.1016/j.renene.2010.06.005.

• Akgün, M., Aydin, O. and Kaygusuz, K., 2007. Experimental study on melting/solidification characteristics of a paraffin as PCM, Energy Conversion and Management, 48(2), pp. 669–678. DOI: 10.1016/j.enconman.2006.05.014.

• Avci, M. and Yazici, M. Y., 2013, Experimental study of thermal energy storage characteristics of a paraffin in a horizontal tube-in-shell storage unit, Energy Conversion and Management. Elsevier Ltd, 73, pp. 271–277. DOI: 10.1016/j.enconman.2013.04.030.

• Aydin, O. et al., 2018. Enhancing storage performance in a tube-in shell storage unit by attaching a conducting fin to the bottom of the tube, Isi Bilimi Ve Teknigi Dergisi/ Journal of Thermal Science and Technology, 38(2), pp. 1–13.

• Ebadi, S. et al., 2018. Melting of nano-PCM inside a cylindrical thermal energy storage system : Numerical study with experimental verification, Energy Conversion and Management, Elsevier, 166(March), pp. 241–259. DOI: 10.1016/j.enconman.2018.04.016.

• Fathi, M. I., and Mussa, M. A., 2021. Experimental study on the effect of tube rotation on performance of horizontal shell and tube latent heat energy storage, Journal of Energy Storage, Elsevier Ltd, 39(April), p. 102626. DOI: 10.1016/j.est.2021.102626.

• Herrick, C. S., and Zarnoch, K. P., 1980. Heat storage capability of a rolling cylinder using Glauber’s salt, International Journal of Ambient Energy, Taylor & Francis Group, 1(1), pp. 47–55. DOI: 10.1080/01430750.1980.9675712.

• Hosseini, M. J. et al., 2012. A combined experimental and computational study on the melting behavior of a medium temperature phase change storage material inside shell and tube heat exchanger, International Communications in Heat and Mass Transfer, Elsevier Ltd, 39(9), pp. 1416–1424. DOI: 10.1016/j.icheatmasstransfer.2012.07.028.

• Hosseini, M. J., Rahimi, M., and Bahrampoury, R., 2015. Thermal analysis of PCM containing heat exchanger enhanced with normal annular fines, Mechanical Sciences, 6(2), pp. 221–234. DOI: 10.5194/ms-6-221-2015.

• Irwan, M. A. M., Nor Azwadi, C. S., and Asako, Y., 2019. Review on Numerical Simulations for Solidification and Melting of Nano-Enhanced Phase Change Materials (NEPCM), IOP Conference Series: Earth and Environmental Science, 268(1), pp. 0–11. DOI: 10.1088/1755-1315/268/1/012114.

• Kandasamy, R., Wang, X. Q., and Mujumdar, A. S., 2007. Application of phase change materials in thermal management of electronics, Applied Thermal Engineering, 27(17–18), pp. 2822–2832. DOI: 10.1016/j.applthermaleng.2006.12.013.

• Khan, M., Zhao, N., and Xu, T., 2019. Numerical Assessment on Fin Design Parameters Employed for Augmentation of Natural Convection and Fluid Flow in a Horizontal Latent Heat Thermal Energy Storage Unit, Engineering, 11(07), pp. 407–428. DOI: 10.4236/eng.2019.117029.

• Kurnia, J. C., and Sasmito, A. P., 2018. Numerical investigation of heat transfer performance of a rotating latent heat thermal energy storage, Applied Energy, Elsevier, 227(August), pp. 542–554. DOI: 10.1016/j.apenergy.2017.08.087.

• Li, W., and Kong, C., 2014. Numerical study on the thermal performance of a shell and tube phase change heat storage unit during melting process, Advances in Mechanical Engineering, 2014. DOI: 10.1155/2014/360283.

• Miró, L., Gasia, J., and Cabeza, L. F., 2016. Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review, Applied Energy, 179, pp. 284–301. DOI: 10.1016/j.apenergy.2016.06.147.

• Nadeem, F. et al., 2019. Comparative review of energy storage systems, their roles, and impacts on future power systems, IEEE Access. IEEE, 7(c), pp. 4555–4585. DOI: 10.1109/ACCESS.2018.2888497.

• Regin, A. F., Solanki, S. C., and Saini, J. S., 2006. Latent heat thermal energy storage using cylindrical capsule: Numerical and experimental investigations, Renewable Energy, 31(13), pp. 2025–2041. DOI: 10.1016/j.renene.2005.10.011.

• Selimefendigil, F., and Öztop, H. F., 2020. Mixed convection in a PCM filled cavity under the influence of a rotating cylinder, Solar Energy, Elsevier, 200(March), pp. 61–75. DOI: 10.1016/j.solener.2019.05.062.

• Senthil, R., and Cheralathan, M., 2016. Melting and Solidification of Paraffin Wax in a Concentric Tube PCM Storage for Solar Thermal Collector, International Journal of Chemical, 14(4), pp. 2634–2640. Available at: http://www.tsijournals.com/abstract/melting-and-solidification-of-paraffin-wax-in-a-concentric-tube-pcm-storage-for-solar-thermal-collector-12762.html.

• Sharma, A. et al., 2009. Review on thermal energy storage with phase change materials and applications, Renewable and Sustainable Energy Reviews, 13(2), pp. 318–345. DOI: 10.1016/j.rser.2007.10.005.

• Soibam, J., 2017. Numerical Investigation of a Heat Exchanger using Phase Change Materials (PCMs), (October).

Similar Articles

You may also start an advanced similarity search for this article.