Scheme for Generating True Random Numbers using Electro-mechanical Switches
Main Article Content
Abstract
This paper proposes a novel method for generating True Random Numbers (TRNs) using electromechanical switches. The proposed generator is implemented using an FPGA board. The system utilizes the phenomenon of electromechanical switch bounce to produce a randomly fluctuated signal that is used to trigger a counter to generate a binary random number. Compared to other true random number generation methods, the proposed approach features a high degree of randomness using a simple circuit that can be easily built using off-the-shelf components. The proposed system is implemented using a commercial relay circuit connected to an FPGA board that is used to process and record the generated random sequences. Applying statistical testing on the experimentally generated sequences revealed a high degree of randomness, which proves its viability to modern applications, such as cryptography and communication system simulation and modeling.
Article received: 15 / 1/ 2022
Article accepted: 20 / 2/ 2022
Article published:1/3/2022
Article Details
Section
How to Cite
References
• [Ahmad, et al., 2002]. Ahmad, Afaq, Mufeed Juma Al-Mushrafi, and Samir Al-Busaidi. "Design and study of a strong crypto-system model for e-commerce." In Proceedings of the 15th international conference on Computer communication, pp. 619-630. 2002.
• [Barkan, 1967]. Barkan, Paul. "A study of the contact bounce phenomenon." IEEE Transactions on Power Apparatus and Systems 2 (1967): 231-240.
• [Bonilla, et al., 2016]. Bonilla, Luis L., Mariano Alvaro, and Manuel Carretero. "Chaos-based true random number generators." Journal of Mathematics in Industry 7, no. 1 (2016): 1-17.
• [Buchovecka, et al. 2016]. Buchovecka, S., Lorencz, R., Kodýtek, F. and Bucek, J., 2016, December. True random number generator based on ROPUF circuit. In 2016 Euromicro Conference on Digital System Design (DSD) (pp. 519-523). IEEE.
• [Crnjac and Kvesic, 2008]. Milic, Dominika Crnjac, and Ljiljanka Kvesic. "Role of Random Numbers in Simulations of Economic Processes." Interdisciplinary Management Research 4 (2008): 562-570.
• [Deoras, 2016]. Deoras, Ameya. “True Random Number Generator”, MathWorks File Exchange, [online]. Available at: <https://www.mathworks.com/matlabcentral/fileexchange/21353-true-random-integer-generator>. Accessed on 10/01/2022.
• [Diaconis et al., 2007]. Diaconis, Persi, Susan Holmes, and Richard Montgomery. "Dynamical bias in the coin toss." SIAM review 49, no. 2 (2007): 211-235.
• [Dorrendorf, et al., 2009]. Dorrendorf, Leo, Zvi Gutterman, and Benny Pinkas. "Cryptanalysis of the random number generator of the windows operating system." ACM Transactions on Information and System Security (TISSEC) 13.1 (2009): 1-32.
• [Hajto, et al., 2019]. Hajtó, Dániel, Ádám Rák, and György Cserey. "Robust memristor networks for neuromorphic computation applications." Materials 12, no. 21 (2019): 3573.
• [Jiang, et al. 2017]. Jiang, Hao, Daniel Belkin, Sergey E. Savel’ev, Siyan Lin, Zhongrui Wang, Yunning Li, Saumil Joshi et al. "A novel true random number generator based on a stochastic diffusive memristor." Nature communications 8, no. 1 (2017): 1-9.
• [Ksiazkiewicz, et al., 2019]. Ksiazkiewicz, Andrzej, Grzegorz Dombek, Karol Nowak, and Jerzy Janiszewski. "Electrodynamic Contact Bounce Induced by Fault Current in Low-Voltage Relays." Energies 12, no. 20 (2019): 3926.
• [Lee, et al., 2017]. Lee, Hochul, Farbod Ebrahimi, Pedram Khalili Amiri, and Kang L. Wang. "Design of high-throughput and low-power true random number generator utilizing perpendicularly magnetized voltage-controlled magnetic tunnel junction." AIP Advances 7, no. 5 (2017): 055934.
• [Mano, 2017]. Mano, M. Morris. Digital logic and computer design. Pearson Education India, 2017.
• [Mathworks, 2021]. MathWorks Support Documentation. “Controlling Random Number Generation”, Matlab 2021 documentation. [online]. Available at: https://www.mathworks.com/help/matlab/math/controlling-random-number-generation.html. Accessed on 10/01/2022.
• [Meyer, et al., 2008]. Meyer, Charles R., Chris S. Renschler, and Roel C. Vining. "Implementing quality control on a random number stream to improve a stochastic weather generator." Hydrological Processes: An International Journal 22, no. 8 (2008): 1069-1079.
• [Miller and Childers, 2012]. Miller, Scott, and Donald Childers. Probability and random processes: With applications to signal processing and communications. Academic Press, 2012.
• [Ren, et al., 2016]. Ren, Wanbin, Yuan He, Jianbing Jin, and Sida Man. "Investigations of the contact bounce behaviors and relative dynamic welding phenomena for electromechanical relay." Review of Scientific Instruments 87, no. 6 (2016): 065111.
• [Rossetti, 2015]. Rossetti, Manuel D. Simulation modeling and Arena. John Wiley & Sons, 2015.
• [Slade, 2017]. Slade, Paul G., ed. Electrical contacts: principles and applications. CRC press, 2017.
• [Stipčević and Koç, 2014]. Stipčević, Mario, and Çetin Kaya Koç. "True random number generators." Open Problems in Mathematics and Computational Science. Springer, Cham, 2014. 275-315.
• [Vinod, et al., 2018]. Vinod, M., S. R. Devadasan, D. Rajanayagam, D. T. Sunil, and V. M. M. Thilak. "Theoretical and industrial studies on the electromechanical relay." International Journal of Services and Operations Management 29, no. 3 (2018): 312-331.
• [Yu, et al., 2019]. Yu, F., Li, L., Tang, Q., Cai, S., Song, Y., & Xu, Q. (2019). A survey on true random number generators based on chaos. Discrete Dynamics in Nature and Society, 2019.
• [Zhang, et al., 2018]. Zhang, Xu, Zhe Zheng, Wanbin Ren, and Zhefeng Zhou. "An experimental investigation of dynamic welding mechanism of contacts used in low current switching devices." In 2018 IEEE Holm Conference on Electrical Contacts, pp. 488-494. IEEE, 2018.
• [Zhang, et al., 2019]. Zhang, Xu, Wanbin Ren, Zhe Zheng, and Shujuan Wang. "Effect of electrical load on contact welding failure of silver tin oxide material used in DC electromechanical relays." IEEE Access 7 (2019): 133079-133089.