Design Comparison between the Gravity and Pressure Sand Filters for Water Treatment, Review
Main Article Content
Abstract
Hygienic engineering has dedicated a lot of time and energy to studying water filtration because of how important it is to human health. Thorough familiarity with the filtration process is essential for the design engineer to keep up with and profit from advances in filtering technology and equipment as the properties of raw water continue to change. Because it removes sediment, chemicals, odors, and microbes, filtration is an integral part of the water purification process. The most popular technique for treating surface water for municipal water supply is considered fast sand filtration, which can be achieved using either gravity or pressure sand filters. Predicting the performance of units in water treatment plants is a basic principle. For that reason, this research was executed to compare gravity and pressure sand filters in terms of construction, use, efficiency, filtration rate, cost, benefit, and drawbacks to predict the performance of those units under different conditions and from an economic standpoint. It also served as a presentation and review of previous studies dealing with the evaluation and development of pressure and gravity filters. This paper gives a brief overview of filtration theory, the types and properties of filter media, filter backwashing, and operational problems that can be avoided in the filtration process.
Article received: 29/08/2022
Article accepted: 16/10/2022
Article published: 01/05/2023
Article Details
Section
How to Cite
References
Al Zubaidy, R. Z., Al-Khafaji, M., and Al-Saadi, R. J., 2017. Rotating Ceramic Water Filter Discs System for Water Filtration. Journal of Engineering, 23(4), pp. 59-78.
Al-Nakeeb, A., Al-Samawi, A. A., and Al-Saffar, H. A., 2018. Upgrading of Alum Preparation and Dosing Unit for Sharq Dijla Water Treatment Plant by Using Programmable Logic Controller System. Journal of Engineering, 24(2), pp. 131-141.
Binnie, C., Kimber, M., and Smethurst, G., 2002. Basic water treatment. (Vol. 473). Cambridge: Royal society of chemistry.
Bourke N., Carty G., Crowe M., Lambert M., 1995_Water Treatment Manuals Filtration. Environmental Protection Agency, Irland.
Bové, J., Pujol, J., Arbat, G., Duran-Ros, M., de Cartagena, F. R., and Puig-Bargués, J., 2018. Environmental assessment of underdrain designs for a sand media filter. Biosystems Engineering, 167, 126-136. doi:10.1016/j.biosystemseng.2018.01.005
Brouckaert, B.M., Amirtharajah, A., Brouckaert, C. J., and Amburgey, J. E., 2006. Predicting the efficiency of deposit removal during filter backwash. Water SA, 32(5), pp. 633-640. doi:10.4314/wsa.v32i5.47842
Burton, F.L., Stensel, H.D., Metcalf and Eddy Inc, and Tchobanoglous, G. 2003. Wastewater engineering: treatment and reuse. New York: McGraw-Hill.
Cleasby, J. L., Arboleda, J., Burns, D. E., Prendiville, P. W., and Savage, E. S., 1977. Backwashing of granular filters. Journal‐American Water Works Association, 69(2), pp. 115-126. doi:10.1002/j.1551-8833.1977.tb06668.x
Deus, F. P. D., Testezlaf, R., and Mesquita, M., 2016. Assessment methodology of backwash in pressurized sand filters. Revista Brasileira de Engenharia Agrícola e Ambiental, 20, pp. 600-605. doi:10.1590/1807-1929/agriambi.v20n7p600-605
Elbana, M., de Cartagena, F. R., and Puig-Bargués, J., 2012. Effectiveness of sand media filters for removing turbidity and recovering dissolved oxygen from a reclaimed effluent used for micro-irrigation. Agricultural Water Management, 111, pp. 27-33. doi:10.1016/j.agwat.2012.04.010
Elimelech, M., and O'Melia, C. R., 1990. Kinetics of deposition of colloidal particles in porous media. Environmental science and technology, 24(10), pp. 1528-1536. doi:10.1021/es00080a012
Firdhouse, M. J., and Lalitha, P., 2015. Biosynthesis of silver nanoparticles and its applications. Journal of Nanotechnology, 2015. doi:10.1155/2015/829526
García-Ávila, F., Avilés-Anazco, A., Sánchez-Cordero, E., Valdiviezo-Gonzáles, L., and Ordonez, M. D. T. (2021). The challenge of improving the efficiency of drinking water treatment systems in rural areas facing changes in the raw water quality. South African Journal of Chemical Engineering, 37, pp. 141-149. doi:10.1016/j.sajce.2021.05.010
Han, S., Fitzpatrick, C. S., and Wetherill, A. (2008). Mathematical modelling of particle removal and head loss in rapid gravity filtration. Separation Science and Technology, 43(7), pp. 1798-1812. doi:10.1080/01496390801973631
Hess, A. F., Rachwa, A., and Chipps, M. J. (2002). Filter maintenance and operations guidance manual. American Water Works Association.
Ison, C. R., and Ives, K. J. (1969). Removal mechanisms in deep bed filtration. Chemical Engineering Science, 24(4), pp. 717-729. doi:10.1016/0009-2509(69)80064-3
Ives, K. J. (1970). Rapid filtration. Water research, 4(3), pp. 201-223. doi:10.1016/0043-1354(70)90068-0
Jegatheesan, V., and Vigneswaran, S., 2005. Deep bed filtration: mathematical models and observations. Critical Reviews in Environmental Science and Technology, 35(6), pp. 515-569. doi:10.1080/10643380500326432
Letterman, R. D., Amirtharajah, A., and O’melia, C. R., 1999. Coagulation and flocculation. Water quality and treatment: a handbook of community water supplies, 5.
Mesquita, M., de Deus, F. P., Testezlaf, R., da Rosa, L. M., and Diotto, A. V., 2019. Design and hydrodynamic performance testing of a new pressure sand filter diffuser plate using numerical simulation. Biosystems Engineering, 183, pp. 58-69. doi:10.1016/j.biosystemseng.2019.04.015
Mesquita, M., Testezlaf, R., and Ramirez, J. S., 2012. The effect of media bed characteristics and internal auxiliary elements on sand filter head loss. Agricultural Water Management, 115, 178-185. doi:10.1016/j.agwat.2012.09.003
Mesquita, M., Testezlaf, R., De Deus, F. P., and Da Rosa, L. M., 2017. Characterization of flow lines generated by pressurized sand filter underdrains. Chemical Engineering Transactions, 58, 715-720. doi: 10.3303/CET1758120
Muchukuri, K. N., Ogendi, G. M., and Moturi, W. N., 2014. Influence of Anthropogenic Activities on Microbial Quality of Surface Water in Subukia Town, Kenya. Journal of Environment Natural Resources and Society, 2(1), pp. 1-10.
O'Melia, C. R., 1985. Particles, pretreatment, and performance in water filtration. Journal of Environmental Engineering, 111(6), pp. 874-890. doi:10.1061/(ASCE)0733-9372(1985)111:6(874)
Punmia, B. C., Jain, A. K., and Jain, A. K., 1995. Water supply engineering. Firewall Media.
Qasim, S. R., Motley, E. M., and Zhu, G., 2000. Water works engineering: planning, design, and operation. Prentice Hall.
Ratnayaka, D. D., Brandt, M. J., and Johnson, M., 2009. Water supply. Butterworth-Heinemann.
Razak, S. Hrudey S., Strategic., 2015 Water Quality Monitoring for Drinking Water Safety, Salisbury, Australia, 2007. parameters for the rapid microbial monitoring in a civil protection module used for drinking water production, Chem. Eng. J., 265, pp. 67–74, doi:10.1016/j.cej.2014.12.010
Roos, N., 2019. The interplay between rapid gravity filter performance and its underdrain system-an assessment of an alternative filter underdrain design. MSc. Thesis, Water and Environmental Engineering Department of Chemical Engineering, Lund University.
Rutledge, S. O., Fahie, C., and Gagnon, G. A., 2002. Assessment of crushed-recycled glass as filter media for drinking water treatment.
Samantaray, S., Samantaray, S., Ghose, D. K., Rath, A., and Mohanty, C. R., 2018. Removal of Turbidity Using Dual Media Filter. In Urbanization Challenges in Emerging Economies: Energy and Water Infrastructure; Transportation Infrastructure; and Planning and Financing (pp. 302-311). Reston, VA: American Society of Civil Engineers. doi:10.1061/9780784482025.031
Sasongko, S. B., Sanyoto, G. J., and Buchori, L., 2021. Study of Performance: An Improved Distillation Using Thermoelectric Modules. Chemical Engineering Transactions, 89, pp. 649-654. doi:10.3303/CET2189109
Sobsey, M. D., Water, S., 2002. Managing water in the home: accelerated health gains from improved water supply (No. WHO/SDE/WSH/02.07). World Health Organization.
Spellman, F. R., 2013. Handbook of water and wastewater treatment plant operations. CRC press.
Stevenson, D. G., 1997. Flow and filtration through granular media—the effect of grain and particle size dispersion. Water Research, 31(2), pp. 310-322. doi:10.1016/S0043-1354(96)00271-0
Sutherland, K., and Chase, G., (2008). Filters and filtration handbook. Elsevier, 5th ed.
Tashaouie, H. R., Gholikandi, G. B., and Hazrati, H., 2012. Artificial neural network modeling for predict performance of pressure filters in a water treatment plant. Desalination and Water Treatment, 39(1-3), pp. 192-198. doi:10.1080/19443994.2012.669175
Turan, M., Sabah, E., Gulsen, H., and Celik, M. S., 2003. Influence of media characteristics on energy dissipation in filter backwashing. Environmental science and technology, 37(18), pp. 4288-4292. doi:10.1021/es020661r
Upton, A., Jefferson, B., Moore, G., and Jarvis, P. (2017). Rapid gravity filtration operational performance assessment and diagnosis for preventative maintenance from on-line data. Chemical Engineering Journal, 313, pp. 250-260. doi:10.1016/j.cej.2016.12.047
Viraraghavan, T., and Mathavan, G. N., 1988. Effects of low temperature on physicochemical processes in water quality control. Journal of Cold Regions Engineering, 2(3), pp. 101-110. doi:10.1061/(ASCE)0887-381X(1988)2:3(101)
Yao, K. M., Habibian, M. T., and O'Melia, C. R., 1971. Water and waste water filtration. Concepts and applications. Environmental science and technology, 5(11), pp. 1105-1112. doi:10.1021/es6