The Efficiency of Belled Piles in Multi-Layers Soils Subjected to Axial Compression and Pullout Loads: Review
Main Article Content
Abstract
Multi-belled piles are piles with enlarged ends; these piles have one or further bells at the lower third part of the pile. These piles are suitable for many soils with problems such as softening clay, the variation of groundwater table, expansive soils, black cotton soil, and loose sand. The current study reviewed the behavior of belled piles in multi-layer soils subjected to axial compression and pullout loading. The review covered the experimental and theoretical works on belled piles in multi-layered soils. These piles were subjected to static and dynamic loadings in compression and pullout cases. Most theoretical results focused on software such as PLAXIS 3D. The axial load applied on the piles comes from the upper structure built above these piles, and negative skin friction comes from groundwater. The results obtained from previous studies showed the validity of using such piles in different types of soil and multilayer soils. According to previous studies, this study aims to find all the things about the belled piles, including the best shape of the belled pile being the half cone and the worst state being when the bell is fully cone. The best number of belled piles is two bells because the bearing capacity increases when the number of bells increases but does not exceed two due to hard work and high cost. The best location of a bell is at the base of the pile. The current study showed that the bearing capacity increased from 40% to 73.75% compared with ordinary piles.
Article received: 22/09/2022
Article accepted: 18/10/2022
Article published: 01/09/2023
Article Details
Section
How to Cite
References
Abbas, H.O., 2021, February. The compressive capacity of conventional and under-reamed piles in soft clay. IOP Conference Series: Materials Science and Engineering (Vol. 1076, No. 1, p. 012094). IOP Publishing. Doi:10.1088/1757-899X/1076/1/012094
Alawneh, A., 1999. Tension piles in the sand: a method including degradation of shaft friction during pile driving. Transportation Research Record, 1663(1), pp. 41-49.
Alhassani, A. M. J., 2021. Analysis of Under-reamed Piles Subjected to Different Types of Load in Clayey Soil. International Journal of Engineering, 34(8), pp. 1940-1948. Doi:10.5829/ije.2021.34.08b.15
Alkroosh, I., and Nikraz, H., 2011. Simulating pile load-settlement behavior from CPT data using intelligent computing. Open Engineering, 1(3), pp. 295-305. Doi:10.2478/s13531-011-0029-2 Al-Mhaidib, A.I., and Edil, T.B., 1998. Model tests for uplift resistance of piles in sand. Geotechnical Testing Journal, 21(3), pp. 213-221. Doi:10.1520/GTJ10895J
Al-Mosawe, M.J., Al-Shakarchi, Y.J., and Al-Taie, S.M., 2007. Embedded in sandy soils with cavities. Journal of Engineering, 13(1), pp. 1168-1187.
Al-Saidi, A.A., Al-Mosawe, M., and Al-Shakarchi, Y.A.S., 2021. Behavior of Defective Cast in Place Piles. Journal of Engineering, 27(4), pp. 96-117 Doi:10.31026/j.eng.2021.04.08
AL-Shamaa, M.F., Sheikha, A.A., Karkush, M.O., Jabbar, M.S., Al-Rumaithi, A.A., 2021. Numerical Modeling of Honeycombed Geocell Reinforced Soil. Modern Applications of Geotechnical Engineering and Construction, pp. 253-263. Springer, Singapore. Doi:10.1007/978-981-15-9399-4_22
Ashour, M., and Helal, A., 2014. Contribution of vertical skin friction to the lateral resistance of large-diameter shafts. Journal of Bridge Engineering, 19(2), pp. 289-302. Doi: 10.1061/(ASCE)BE.1943-5592.0000505.
Ayothiraman, R., and Boominathan, A., 2013. Depth of fixity of piles in clay under dynamic lateral load. J. Geotech. Geol. Eng., 31(2), pp. 447–461. Doi:10.1007/s10706-012-9597-z
Bouassida, M., 2006. Modeling the behavior of soft clays and new contributions for soil improvement solutions. Proc. 2ndInt. Conf. on Problematic Soils. pp. 1-12.
Chae, D., Cho, W., and Na, H.Y., 2012. Uplift capacity of belled pile in weathered sandstones. International Journal of Offshore and Polar Engineering, 22(04). pp. 297-305. http://www.isope.org/publications
Chen, J.J., Wang, J.H., Liang, R., Fan, W., and Wang, W.D., 2010. Behavior of uplift pile foundation during large-scale deep excavation. In GeoFlorida 2010: Advances in Analysis, Modeling & Design. pp. 1727-1736. Doi:10.1061/41095(365)175
Chiluwal, S., and Guner, S., 2019. Design recommendations for helical pile anchorages subjected to cyclic load reversals. https://www.utoledo.edu/engineering/faculty/serhan-guner/docs/R2_DFI_Helical_Pile_Anchorages.pdf
Chow, F. C., Jardine, R. J., Nauroy, J. F., & Brucy, F., 1997. Time-related increases in the shaft capacities of driven piles in sand. Geotechnique, 47(2), pp. 353-361. Doi:10.1680/geot.1997.47.2.353
Das, B.M., Seeley G.R., 1975. Uplift capacity of buried model piles in sand. Journal of the Geotechnical Engineering Division, 101(10), pp. 1091-1094. Doi:10.1061/AJGEB6.0000208
Deb, T., and Pal, S. K., 2019. Comparison of Uplift Capacity and Nonlinear Failure Surfaces of Single-Belled Anchor in Homogeneous and Layered Sand Deposits. Advances in Civil Engineering. Doi:10.1155/2019/4672615
Decourt, L., 1999. Behavior of foundations under working load conditions. 11th Pan-American Conferenvce on Soil Mechanics and Geotechnical Engineering, Foz do Iguaçu, 4, pp. 453-488.
Dhatrak, P., Shirsat, U., Sumanth, S., and Deshmukh, V., 2018. Finite element analysis and experimental investigations on stress distribution of dental implants around implant-bone interface. Materials Today: Proceedings, 5(2), pp. 5641-5648. Doi:10.1016/j.matpr.2017.12.157
Diana, W., Hardyatmo, H.C., and Suhendro, B., 2017. Effect of pile connections on the performance of the nailed slab system on the expansive soil. GEOMATE Journal, 12(32), pp. 134-141. DOI: Doi:10.21660/2017.32.42773
Dickin, E.A., and Leung, C.F., 1992. The influence of foundation geometry on the uplift behavior of piles with enlarged bases. Canadian Geotechnical Journal, 29(3), pp. 498-505. Doi:10.1139/t92-054
Ellis, E.A., and Springman, S.M., 2001. Full-height piled bridge abutments constructed on soft clay. Geotechnique, 51(1), pp. 3-14. Doi:10.1680/geot.2001.51.1.3
Emirler, B., Tolun, M., and Yildiz, A., 2020. Investigation on determining uplift capacity and failure mechanism of the pile groups in sand. Ocean Engineering, 218, P. 108145. Doi:10.1016/j.oceaneng.2020.108145
Engin, H. K., Septanika, E. G., and Brinkgreve, R. B. J., 2008. Estimation of pile group behavior using embedded piles. In Proceeding of the 12th International Conference of International Association for Computer Methods and Advances in Geomechanics, Goa, India. pp. 3231-3238.
Farokhi, A.S., Alielahi, H., and Mardani, Z., 2014. Optimizing the performance of under-reamed piles in clay using numerical method. Electronic Journal of Geotechnical Engineering, 19(Bundle G), pp. 1507-1520.
Gao, G., Gao, M., Chen, Q and Yang, J, 2016. Field Load Testing Study of Vertical Bearing Behavior of a Large Diameter Belled Cast-in-Place Pile. KSCE Journal of Civil Engineering, 23, pp. 2009–2016. Doi:10.2514/3.56113
Goudar S., and Kamatagi A., 2022. An experimental evaluation of axial load bearing capacity of belled and straight piles embedded in sand. International Journal of Engineering. 35(8), pp. 1599-1607. Doi:10.5829/ije.2022.35.08b.16
Guner, S., and Chiluwal, S., 2021. Cyclic load behavior of helical pile-to-pile cap connections subjected to uplift loads. Engineering Structures, 243, P.112667. Doi:10.1016/j.engstruct.2021.112667
Hazzar, L., Hussien, M.N., and Karray, M., 2017. Influence of vertical loads on lateral response of pile foundations in sands and clays. Journal of rock mechanics and geotechnical engineering, 9(2), pp. 291-304. Doi:10.1016/j.jrmge.2016.09.002
Honda, T., Hirai, Y., and Sato, E., 2011. The uplift capacity of belled and multi-belled piles in dense sand. Soils and Foundations, 51(3), pp. 483-496. Doi:10.3208/sandf.51.483
Ilamparuthi, K., and Dickin, E.A., 2001. The influence of soil reinforcement on the uplift behavior of belled piles embedded in the sand. Geotextiles and Geomembranes, 19(1), pp. 1-22. Doi:10.1016/S0266-1144(00)00010-8
Jebur, M.M., Ahmed, M.D., and Karkush, M.O., 2020. Numerical analysis of under-reamed pile subjected to dynamic loading in sandy soil. IOP conference series: materials science and engineering (Vol. 671, No. 1, P. 012084). IOP Publishing. Doi:10.1088/1757-899X/671/1/012084
Kang, J.G., and Kang, G.O., 2022. Experimental and Semitheoretical Analyses of Uplift Capacity of Belled Pile in Sand. International Journal of Geomechanics, 22(12), P.04022217. Doi:10.1061/(ASCE)GM.1943-5622.0002511
Kang, J.G., Yasufuku, N., Ishikura, R., and Purnama, A.Y., 2019. Prediction of Uplift Capacity of Belled-type Pile with Shallow Foundation in Sandy Ground. Lowland Technology International, 21(2), pp. 71-79. https://cot.unhas.ac.id/journals/index.php/ialt_lti/article/view/683
Karkush, M.O., Ala, N.A., 2019. Numerical evaluation of foundation of digester tank of the sewage treatment plant. Civil Engineering Journal. 22(5), pp. 996-1006. Doi:10.28991/cej-2019-03091306
Karkush, M.O., Sabaa, M.R., Salman, A.D., Al-Rumaithi, A., 2022. Prediction of bearing capacity of driven piles for Basrah governatore using SPT and MATLAB. Journal of the Mechanical Behavior of Materials. 1;31(1), pp. 39-51. Doi:10.1515/jmbm-2022-0005
Khatri, V.N., Kumar, A., Gupta, S.K., Dutta, R.K., and Gnananandarao, T., 2022. Numerical study on the uplift capacity of under-reamed piles in clay with linearly increasing cohesion. International journal of geotechnical engineering, 16(4), pp. 438-449. Doi:10.1080/19386362.2019.1660527
Kong, G.Q., Yang, Q., Liu, H.L., and Liang, R.Y., 2013. Numerical study of a new belled wedge pile type under different loading modes. European Journal of Environmental and Civil Engineering, 17(sup1), pp.s65-s82. Doi:10.1080/19648189.2013.834586
Kranthikumar, A., Sawant, V.A., and Shukla, S.K., 2016. Numerical modeling of granular anchor pile system in loose sandy soil subjected to uplift loading. International Journal of Geosynthetics and Ground Engineering, 2(2), pp. 1-7. Doi:10.1007/s40891-016-0056-4
Krishnan, R., Gazetas, G., and Velez, A., 1983. Static and dynamic lateral deflexion of piles in non-homogeneous soil stratum. Geotechnique, 33(3), pp. 307-325. Doi:10.1680/geot.1983.33.3.307
Lee, W., Kim, D., Salgado, R., and Zaheer, M., 2010. Setup of driven piles in layered soil. Soils and foundations, 50(5), pp. 585-598. Doi:10.3208/sandf.50.585
Lei, J., Zhou, Z., Han, D., Zhu, S., Feng, H., Wang, K., and Tian, Y., 2022. Centrifuge model tests and settlement calculation of belled and multi-belled piles in loess area. Soil Dynamics and Earthquake Engineering, 161, P.107425. Doi:10.1016/j.soildyn.2022.107425
Liang, H., Zeng, H., Cao, K., Liu, C., and Cheng, X., 2021. Analysis of Cumulative Damage Characteristics of Long Spiral Belled Pile under Horizontal Cyclic Loading at Sea. Shock and Vibration, pp. 1-20. Doi:10.1155/2021/2667545
Liu, B., Li, H., and Liu, S., 2020. Influencing factors of load carrying capacity and cooperative work laws of metro uplift piles. Structural Durability & Health Monitoring, 14(3), p.249. Doi:10.32604/sdhm.2020.06482
Liu, G., Zhang, Z., Cui, Q., Peng, J., and Cai, M., 2021. Uplift behavior of belled piles subjected to static loading. Arabian Journal for Science and Engineering, 46, pp. 4369-4385. Doi:10.1007/s13369-020-04779-x
Madhusudan Reddy, K., and Ayothiraman, R., 2015. Experimental studies on behavior of single pile under combined uplift and lateral loading. Journal of geotechnical and geoenvironmental engineering, 141(7), P.04015030. Doi:10.1061/(ASCE)GT.1943-5606.0001314
Meyerhof, G.G., and Adams, J.I., 1968. The ultimate uplift capacity of foundations. Canadian geotechnical journal, 5(4), pp. 225-244. Doi:10.1139/t68-024
Moayedi, H., and Mosallanezhad, M., 2017. Uplift resistance of belled and multi-belled piles in loose sand. Measurement, 109, pp. 346-353. Doi:10.1016/j.measurement.2017.06.001
Mohamed, A., Amr, H., 2014. Contribution of Vertical Skin Friction to the Lateral Resistance of Large-Diameter Shafts. Journal of Bridge Engineering, 19(2), PP. 289-302. Doi:10.1061/(ASCE)BE.1943-5592.0000505
Mosallanezhad, M., and Moayedi, H., 2017. Developing hybrid artificial neural network model for predicting uplift resistance of screw piles. Arabian Journal of Geosciences, 10(22), P.479. Doi:10.1007/s12517-017-3285-5
Nazir, R., Moayedi, H., Pratikso, A., Mosallanezhad, M., 2015. The uplift load capacity of an enlarged base pier embedded in dry sand. Arab. J. Geosci., 8, pp. 7285–7296. Doi:10.1007/s12517-014-1721-3
Poorooshasb, H. B., Alamgir, M., and Miura, N., 1996. Negative skin friction on rigid and deformable piles. Computers and Geotechnics, 18(2), pp. 109-126. Doi:10.1016/0266-352X(95)00026-7
Poulos, H.G., 1994. An approximate numerical analysis of pile–raft interaction. International Journal for Numerical and Analytical Methods in Geomechanics, 18(2), pp. 73-92. Doi:10.1002/nag.1610180202
Rao, M. R., Sridevi, G., and Rao, A. S., 2011. Performance of cushions of waste materials in heave reduction of expansive soils. In Proceedings of Indian Geotechnical Conference December. pp. 15-17. https://gndec.ac.in/~igs/ldh/conf/2011/articles/T04_09.pdf
Ruan, X., 2017. Practical Algorithm for large diameter pile tip bearing capacity based on displacement control. In 2017 6th International Conference on Energy and Environmental Protection (ICEEP 2017), pp. 64-69. Doi:10.2991/iceep-17.2017.11
Seo, H.O.Y.O.U.N.G., and Prezzi, M.O.N.I.C.A., 2007. Analytical solutions for a vertically loaded pile in multilayered soil. Geomechanics and Geoengineering, 2(1), pp. 51-60. Doi:10.1080/17486020601099380
Sharma, D., Jain, M. P., and Prakash, C., 1978. Handbook on underreamed and bored compaction pile foundations. Jain.
Shin, E.C., Das, B.M., Puri, V.K., 1993. Ultimate uplift capacity of model rigid metal piles in clay. Geotech Geol Eng 11, pp. 203–215 . Doi:10.1007/BF00531251
Sitharam, T.G., 2018. Advanced foundation engineering. Taylor & Francis, a CRC title, part of the Taylor & Francis imprint, a member of the Taylor & Francis Group, the academic division of T & F Informa, plc.
Sivakumar, V., O'Kelly, B.C., Madhav, M.R., Moorhead, C., and Rankin, B., 2013. Granular anchors under vertical loading–axial pull. Canadian Geotechnical Journal, 50(2), pp. 123-132. Doi:10.1139/cgj-2012-0203
Soomro, M.A., Mangnejo, D.A., Bhanbhro, R., Memon, N.A., and Memon, M.A., 2019. 3D finite element analysis of pile responses to adjacent excavation in soft clay: Effects of different excavation depths systems relative to a floating pile. Tunnelling and Underground Space Technology, 86, pp. 138-155. Doi:10.1016/j.tust.2019.01.012
Sun, T., Cui, X.Z., Sun, Y.F., Han, R.N., Ma, R.J., Yang, J.J., Wang, Y.L., and Chang, Y.J., 2022. Model tests on uplift capacity of double-belled pile influenced by distance between bells. Journal of Central South University, 29(5), pp. 1630-1640. Doi:10.1007/s11771-022-5018-5
Tafreshi, S.M., Khalaj, O., and Dawson, A.R., 2014. Repeated loading of soil containing granulated rubber and multiple geocell layers. Geotextiles and Geomembranes, 42(1), pp. 25-38. Doi:10.1016/j.geotexmem.2013.12.003
Wagner, J.F., 2013. Mechanical properties of clays and clay minerals. In Developments in clay science Vol. 5, pp. 347-381. Doi:10.1016/B978-0-08-098258-8.00011-0
Wu, P., Guo, Y., Zhu, D., Jin, W., Zhang, Z., and Liang, R., 2020. Flexural performances of prestressed high strength concrete piles reinforced with hybrid GFRP and steel bars. Marine Georesources & Geotechnology, 38(5), pp. 518-526. Doi:10.1080/1064119X.2019.1600081
Yao, W.J., Chen, S.P., 2014. Elastic-plastic analytical solutions of deformation of the uplift belled pile. Technical vjesnik/Technical Gazette. Nov 1;21(6). https://journals.riverpublishers.com/index.php/ACES/article/download/10379/8691
Yu, M., Liu, B., Wang, Q., and Song, Y., 2020. Study on bearing capacity of belled uplift piles in soft clay area. Indian Geotechnical Journal, 50, pp. 848-858. Doi:10.1007/s40098-020-00420-8
Zhang, D.G., Shen, X.L., Gao, F., Ren, Y.N., Wang, L.H., and Ma, C., 2020, September. Application of double-enlarged excavation foundation in transmission line engineering. In Journal of Physics: Conference Series (Vol. 1634, No. 1, P. 012162). IOP Publishing. Doi:10.1088/1742-6596/1634/1/012162
Zhang, L., and O'Kelly, B.C., 2014. The principle of effective stress and triaxial compression testing of peat. Proceedings of the Institution of Civil Engineers-Geotechnical Engineering, 167(1), pp. 40-50. Doi:10.1680/geng.12.00038