Review about the Applications of Nanoparticles in Batteries

Main Article Content

Huda Majid Hasen
Rasha Jasim Tuama

Abstract

Nanoparticles are defined as an organic or non-organic structure of matter in at least one of its dimensions less than 100 nm. Nanoparticles proved their effectiveness in different fields because of their unique physicochemical properties. Using nanoparticles in the power field contributes to cleaning and decreasing environmental pollution, which means it is an environmentally friendly material. It could be used in many different parts of batteries, including an anode, cathode, and electrolyte. This study reviews different types of nanoparticles used in Lithium-ion batteries by collecting the advanced techniques for applying nanotechnology in batteries. In addition, this review presents an idea about the advantages and disadvantages of using nanoparticles in batteries to harness energy without harming the environment. This review showed that applying nanotechnology and using nanoparticles in the production technique of batteries open the field for developing energy storage in Nano sized batteries. This, in turn, is important in the new era of technology in the industries of electronic devices and precision electrical appliances such as mobile phones, digital cameras, etc.

Article Details

How to Cite
“Review about the Applications of Nanoparticles in Batteries” (2023) Journal of Engineering, 29(08), pp. 47–60. doi:10.31026/j.eng.2023.08.04.
Section
Articles

How to Cite

“Review about the Applications of Nanoparticles in Batteries” (2023) Journal of Engineering, 29(08), pp. 47–60. doi:10.31026/j.eng.2023.08.04.

Publication Dates

References

Asenbauer, J., Eisenmann, T., Kuenzel, M., Kazzazi, A., Chen, Z., and Bresser, D., 2020. The success story of graphite as a lithium-ion anode material–fundamentals, remaining challenges, and recent developments including silicon (oxide) composites. Sustainable Energy and Fuels, 4(11), pp. 5387–5416. Doi:10.1039/d0se00175a

Bello, A., Fashedemi, O. O., Fabiane, M., Lekitima, J. N., Ozoemena, K. I., and Manyala, N., 2013. Microwave assisted synthesis of MnO2 on nickel foam-graphene for electrochemical capacitor. Electrochimica Acta, 114, pp. 48–53. Doi:10.1016/j.electacta.2013.09.34

Bhatnagar, A., Tripathi, M., Shalu and Prajapati, A., 2022. Nanotechnology for Batteries. In Nanotechnology for Electronic Applications, pp. 29-48. Doi:10.1007/978-981-16-6022-1

Chen, X., Zheng, J., Li, L., and Chu, W., 2022. Strategy for enhanced performance of silicon nanoparticle anodes for lithium-ion batteries. RSC Advances, 12(28), pp. 17889–17897. Doi:10.1039/d2ra02007f

Chen, Y., Li, X., Zhou, L., Mai, Y. W., and Huang, H., 2015. High-performance electrospun nanostructured composite fiber anodes for lithium-ion batteries. In Multifunctionality of Polymer Composites: Challenges and New Solutions. Elsevier Inc. pp. 662–689. Doi:101016/B978-0-323-26434-1.00021-0

Cheng, F., Tao, Z., and Chen, J., 2011. Nanostructured electrode materials for lithium batteries. The Chemistry of Nanostructured Materials, 2, pp. 85–126. Doi:10.1142/9789814313070_0004

Chokkareddy, R., and Redhi, G. G., 2018. Green synthesis of metal nanoparticles and its reaction mechanisms. The Macabresque: Human Violation and Hate in Genocide, Mass Atrocity and Enemy-Making, October, pp. 113–139. Doi:10.1002/9781119418900.ch4

Cui, L., Qi, H., Wang, N., Gao, X., Song, C., Yang, J., and Wang, G., 2022. N/S co-doped CoSe/C nanocubes as anode materials for Li-ion batteries. pp. 244–251. Doi:10.1515/ntrev-2022-0018

Fahad, M. M., Majeed, M. S., and Hashim, E. T., 2021. Carbon Nanoparticles Synthesis By Different Nd: Yag Laser Pulse Energy. Journal of Engineering, 27(7), pp. 1–12. Doi:10.31026/j.eng.2021.07.01

Fei, L., Lin, Q., Yuan, B., Chen, G., Xie, P., Li, Y., Xu, Y., Deng, S., Smirnov, S., and Luo, H., 2013. Reduced graphene oxide wrapped FeS nanocomposite for lithium-ion battery anode with improved performance. ACS Applied Materials and Interfaces, 5(11), pp. 5330–5335. Doi:10.1021/am401239f

Galushkin, N. E., Yazvinskaya, N. N., and Galushkin, D. N., 2020. A critical study of using the Peukert equation and its generalizations for determining the remaining capacity of lithium-ion batteries. Applied Sciences, 10(16), P. 5518. Doi:10.3390/app10165518

García‐Martínez, J., Lancaster, T. M., and Ying, J. Y., 2008. Synthesis and Catalytic Applications of Self‐Assembled Carbon Nanofoams. Advanced Materials, 20(2), pp. 288–292. Doi:10.1002/adma.200602977

Girishkumar, G., Rettker, M., Underhile, R., Binz, D., Vinodgopal, K., McGinn, P., and Kamat, P., 2005. Single-wall carbon nanotube-based proton exchange membrane assembly for hydrogen fuel cells. Langmuir, 21(18), pp. 8487–8494. Doi:10.1021/la051499j

Giuriatti, A., 2018. Analysis and characterization of high-loading nanofluid electrolytes for redox flow battery for electrical vehicles. Master Thesis, the Università Degli Studi Di Padova

Goutam, S., Omar, N., Van Den Bossche, P., and Van Mierlo, J., 2017. Review of nanotechnology for anode materials in batteries. Emerging Nanotechnologies in Rechargeable Energy Storage Systems, pp. 45–82. Doi:10.1016/B978-0-323-42977-9

Gu, R., 2022, April. Promotion of Nanotechnology for Properties of Anode Materials in Li-ion Batteries. In IOP Conference Series: Earth and Environmental Science (Vol. 1011, No. 1, p. 012003). IOP Publishing. Doi:10.1088/1755-1315/1011/1/012003

Hamza, M. S., Shaker, S. S., and Shaker, Khitam S., 2016. Preparation and Study of morphological properties of ZnO nano Powder. Journal of Engineering, 22(4), pp. 116–126. Doi:10.31026/j.eng.2016.04.08

Heo, K., Im, J., Kim, S., Lee, C. K., Chang, D. R., Kim, J., Lee, J. W., and Lim, J., 2020. Effect of nanoparticles in cathode materials for flexible Li-ion batteries. Journal of Industrial and Engineering Chemistry, 81(September), pp. 278–286. Doi:10.1016/j.jiec.2019.09.015

Hwang, J., Jung, M., Park, J. J., Kim, E. K., Lee, G., Lee, K. J., Choi, J. H., and Song, W. J., 2022. Preparation and Electrochemical Characterization of Si@C Nanoparticles as an Anode Material for Lithium-Ion Batteries via Solvent-Assisted Wet Coating Process. Nanomaterials, 12(10). Doi:10.3390/nano12101649

Jawad, R.S., Chaichan, M.T. and Kadhum, J.A., 2016. Nanoparticles (NPs) leverage in Lithium-Ion batteries performance. International Journal of Pharmacy & Technology, 8(3), pp.18995-19004.

Kianfar, E., 2019. Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: a review. Reviews in Inorganic Chemistry, 39(3), pp. 157–177. Doi:10.1515/revic-2019-0001

Kianfar, E., A, H. J., and Razavikia, S. A., 2020. Introducing the Application of Nanotechnology in Lithium-Ion Battery. In MedDocs eBooks (Vol. 2020). Hindawi. http://meddocsonline.org/

Kianfar, E., and Salimi, M., 2020. A review on the production of light olefins from hydrocarbons cracking and methanol conversion. Advances in Chemistry Research, 59, pp. 1–81. https//www.researchgate.net/publication/336680370

Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., 2018a. Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for methanol to gasoline conversion. International Journal of Chemical Reactor Engineering, 16(7). Doi:10.1515/ijcre-2017-0229

Kianfar, E., Salimi, M., Pirouzfar, V., and Koohestani, B., 2018b. Synthesis of modified catalyst and stabilization of CuO/NH 4‐ZSM‐5 for conversion of methanol to gasoline. International Journal of Applied Ceramic Technology, 15(3), pp. 734–741. Doi:10.1111/ijac.12830

Kim, C., Noh, M., Choi, M., Cho, J., and Park, B., 2005. Critical size of a nano SnO2 electrode for Li-secondary battery. Chemistry of Materials, 17(12), pp. 3297–3301. Doi:10.1021/cm048003o

Lee, Y. S., Yoon, C. S., Sun, Y. K., Kobayakawa, K., and Sato, Y., 2002. Synthesis of nano-crystalline LiFeO2 material with advanced battery performance. Electrochemistry Communications, 4(9), pp. 727–731. Doi:10.1016/S1388-2481(02)00436-8

Li, T., Dong, H., Shi, Z., Yue, H., Yin, Y., Li, X., Zhang, H., Wu, X., Li, B., and Yang, S., 2022. Composite Nanoarchitectonics with CoS2 Nanoparticles Embedded in Graphene Sheets for an Anode for Lithium-Ion Batteries. Nanomaterials. Doi:10.3390/nano12040724

Liu, T., Zhang, M., Wang, Y. L., Wang, Q. Y., Lv, C., Liu, K. X., Suresh, S., Yin, Y. H., Hu, Y. Y., and Li, Y. S., 2018. Engineering the surface/interface of horizontally oriented carbon nanotube macrofilm for foldable lithium‐ion battery withstanding variable weather. Advanced Energy Materials, 8(30), P. 1802349. Doi:10.1002/aenm.201802349

Luo, Z., Li, F., Hu, C., Yin, L., Li, D., Ji, C., Zhuge, X., Zhang, K., and Luo, K., 2021. Highly dispersed silver nanoparticles for performance-enhanced lithium-oxygen batteries. Journal of Materials Science and Technology, 73, pp. 171–177. Doi:10.1016/j.jmst.2020.07.039

Malini, R., Uma, U., Sheela, T., Ganesan, M., and Renganathan, N. G., 2009. Conversion reactions: a new pathway to realise energy in lithium-ion battery. Ionics, 15(3), pp. 301–307. Doi:10.1007/s11581-008-0236-x

Manaktala, S.S. and Singh, K.M., 2016. Nanotechnology for energy applications. ISST Journal of Electrical & Electronics Engineering, 7(1), pp.63-69.

Manidurai, P. and Sekar, R., 2017. Nanomaterials in Energy Generation. Handbook of Composites from Renewable Materials, Nanocomposites: Advanced Applications, 8, P.207. Doi:10.1002/9781119441632.ch155

Meng, Q., Zhuang, Y., Jiang, R., Meng, S., Wang, Z., Li, L., Zhang, Y., Jia, S., Zhao, P., and Zheng, H., 2021. Atomistic observation of desodiation-induced phase transition in sodium tungsten bronze. The Journal of Physical Chemistry Letters, 12(12), pp. 3114–3119. Doi:10.1021acs.jpclett.1c00132

Obreja, V. V. N., 2008. On the performance of supercapacitors with electrodes based on carbon nanotubes and carbon activated material—A review. Physica E: Low-Dimensional Systems and Nanostructures, 40(7), pp. 2596–2605. Doi:10.1016/j.physe.2007.09.044

Schanze, K. S., and Mallett, J. J., 2016. Preface to Forum on “Current Trends in Functional Surfaces and Interfaces for Biomedical Applications.” In ACS Applied Materials and Interfaces, 8(24), p. 14895. ACS Publications. Doi:10.1021/acsami.6b06711

Scrosati, B., and Garche, J., 2010. Lithium batteries: Status, prospects and future. Journal of Power Sources, 195(9), 2419–2430. Doi:10.1016/j.jpowsour.2009.11.048

Su, Q., Xie, J., Zhang, J., Zhong, Y., Du, G., and Xu, B., 2014. In situ transmission electron microscopy observation of electrochemical behavior of CoS2 in lithium-ion battery. ACS Applied Materials and Interfaces, 6(4), 3016–3022. Doi:10.1021/am4056084

Sun, B., and Ni, J., 2022. NiP nanoparticles encapsulated in lamellar carbon as high-performance anode materials for sodium-ion batteries. Electrochemistry Communications, 141(8), p. 107344. Doi:10.1016/j.elecom.2022.107344

Terrones, M., 2003. Science and technology of the twenty-first century: synthesis, properties, and applications of carbon nanotubes. Annual Review of Materials Research, 33(1), pp. 419–501. Doi:10.1146/annurev.matsci.33.012802.100255

Thornton, K., Harb, J., and Lin, L., 2004. Section 4: Nanotechnology for Fuel Cells and Batteries. In NSF Workshop.

Tiwari, J. N., Tiwari, R. N., and Kim, K. S., 2012. Zero-dimensional, one-dimensional, two-dimensional and three-dimensional nanostructured materials for advanced electrochemical energy devices. Progress in Materials Science, 57(4), pp. 724–803. Doi:10.1016/j.pmatsci.2011.08.003

Torabi, M., 2011. Electrochemical evaluation of pbo nanoparticles as anode for lithium ion batteries. International Journal of Engineering, 24(4), pp. 351–356. Doi:10.5829/idosi.ije.2011.24.04b.05

Tu, C., Peng, A., Zhang, Z., Qi, X., Zhang, D., Wang, M., Huang, Y., and Yang, Z., 2021. Surface-seeding secondary growth for CoO@ Co9S8 PN heterojunction hollow nanocube encapsulated into graphene as superior anode toward lithium ion storage. Chemical Engineering Journal, 425, P. 130648. Doi:10.1016/j.cej.2021.130648

Wang, H., Wu, X., Qi, X., Zhao, W., and Ju, Z., 2018. Sb nanoparticles encapsulated in 3D porous carbon as anode material for lithium-ion and potassium-ion batteries. Materials Research Bulletin, 103, pp. 32–37. Doi:10.1016/j.materresbull.2018.03.018

Wang, J., Zhang, S. Q., Guo, Y. Z., Shen, J., Attia, S. M., Zhou, B., Zheng, G. Z., and Gui, Y. S., 2001. Morphological effects on the electrical and electrochemical properties of carbon aerogels. Journal of the Electrochemical Society, 148(6), D75. Doi:10.1149/1.1368104

Wolfgang Dubbert, Schwirn, K., Völker, D., and Apel, P., 2014. Use of Nanomaterials in Energy Storage. October 2011, pp. 1–19.

https://www.umweltbundesamt.de/sites/default/files/medien/376/publikationen/use_of_nanomaterials_in_energy_storage.pdf

Wu, F., He, Z., Wang, M., Huang, Y., and Wang, F., 2022. Construction of three-dimensional carbon framework-loaded silicon nanoparticles anchored by carbon film for high-performance lithium-ion battery anode materials. Nano Research, 15(7), pp. 6168–6175. Doi:10.1007/s12274-022-4264-z

Xie, J., Yang, Y., Li, G., Xia, H., Wang, P., Sun, P., Li, X., Cai, H., and Xiong, J., 2019. One-step sulfuration synthesis of hierarchical NiCo₂S₄@NiCo₂S₄ nanotube/nanosheet arrays on carbon cloth as advanced electrodes for high-performance flexible solid-state hybrid supercapacitors. RSC Adv., 9. Doi:10.1039/c8ra10435b

Xu, J., Jain, G., Balasubramanian, M., and Yang, J., 2006. Qualitatively Different Behavior of Electrode Materials at the Nanoscale Implications for 3D Battery Nanoarchitectures. ECS Meeting Abstracts, 34, P. 1243. Doi:10.1149/MA2005-02/34/1243

Xu, Y., Liu, Q., Zhu, Y., Liu, Y., Langrock, A., Zachariah, M. R., and Wang, C., 2013. Uniform nano-Sn/C composite anodes for lithium-ion batteries. Nano Letters, 13(2), pp. 470–474. Doi:10.1021/nl303823k

Yasin, G., Muhammad, N., Nguyen, T. A., and Nguyen-Tri, P., 2020. Nanobattery: An introduction. Nanobatteries and Nanogenerators: Materials, Technologies, and Applications: A Volume in Micro and Nano Technologies, January 2021, pp. 3–9. Doi:10.1016/B978-0-12-821548-7.00001-4

Ye, Y.-S., Xie, X.-L., Rick, J., Chang, F.-C., and Hwang, B.-J., 2014. Improved anode materials for lithium-ion batteries comprise non-covalently bonded graphene and silicon nanoparticles. Journal of Power Sources, 247, pp. 991–998. Doi:10.1016/j.jpowsour.2013.08.048

Yi, Z., Han, Q., Zan, P., Wu, Y., Cheng, Y., and Wang, L., 2016. Sb nanoparticles encapsulated into porous carbon matrixes for high-performance lithium-ion battery anodes. Journal of Power Sources, 331, pp. 16–21. Doi:10.1016/j.jpowsour.2016.09.027

Zhang, J., Zhang, L., Sun, F., and Wang, Z., 2018a. An Overview on Thermal Safety Issues of Lithium-ion Batteries for Electric Vehicle Application. IEEE Access, 6(5), pp. 23848–23863. Doi:10.1109/ACCESS.2018.2824838

Zhang, X., Lai, F., Chen, Z., He, X., Li, Q., and Wang, H., 2018b. Metallic Sb nanoparticles embedded in carbon nanosheets as anode material for lithium-ion batteries with superior rate capability and long cycling stability. Electrochimica Acta, 283, pp. 1689–1694. Doi:10.1016/j.electacta.2018.07.116

Zhao, X., and Lehto, V. P., 2021. Challenges and prospects of nanosized silicon anodes in lithium-ion batteries. Nanotechnology, 32(4). Doi:10.1088/1361-6528/abb850

Zhu, K., Luo, Y., Zhao, F., Hou, J., Wang, X., Ma, H., Wu, H., Zhang, Y., Jiang, K., and Fan, S., 2018. Free-standing, binder-free titania/super-aligned carbon nanotube anodes for flexible and fast-charging Li-ion batteries. ACS Sustainable Chemistry and Engineering, 6(3), pp. 3426–3433. Doi:10.1021/acssuschemeng.7b03671

Zhu, S., Sheng, J., Chen, Y., Ni, J., and Li, Y., 2021. Carbon nanotubes for flexible batteries: Recent progress and future perspective. National Science Review, 8(5). Doi:10.1093/nsr/nwaa261

Similar Articles

You may also start an advanced similarity search for this article.