Comparative Analysis of H2 and H∞ Robust Control Design Approaches for Dynamic Control Systems

Main Article Content

Anwer J. Ali
Hayder H. Abbas
Hassan Bevrani

Abstract

This paper discusses using H2 and H∞ robust control approaches for designing control systems. These approaches are applied to elementary control system designs, and their respective implementation and pros and cons are introduced. The H∞ control synthesis mainly enforces closed-loop stability, covering some physical constraints and limitations. While noise rejection and disturbance attenuation are more naturally expressed in performance optimization, which can represent the H2 control synthesis problem. The paper also applies these two methodologies to multi-plant systems to study the stability and performance of the designed controllers. Simulation results show that the H2 controller tracks a desirable closed-loop performance, while the H∞ controller guarantees robust stability for the closed-loop system. The validation of the techniques is demonstrated through the robust and performance gamma index, where the H∞ controller achieved a robust gamma index of 0.8591, indicating good robustness and the H2 controller achieved a performance gamma index of 2.1972, indicating a desirable performance. The robust control toolbox of MATLAB is used for simulation purposes. Overall, the paper shows that selecting a suitable, robust control strategy is crucial for designing effective control systems, and the H2 and H∞ robust control approaches are viable options for achieving this goal.

Article Details

How to Cite
“Comparative Analysis of H2 and H∞ Robust Control Design Approaches for Dynamic Control Systems” (2023) Journal of Engineering, 29(08), pp. 1–15. doi:10.31026/j.eng.2023.08.01.
Section
Articles
Author Biographies

Anwer J. Ali, Technical Institute of Sulaimani Sulaimani Polytechnic University Sulaimani IRAQ

 

 

 

 

 

Hayder H. Abbas, Department of Chemical Engineering, Faculty of Engineering, Koya University, Erbil

 

 

 

Hassan Bevrani , Dep. of Electrical Eng. SMGRC University of Kurdistan Sanandaj Iran.

 

 

 

How to Cite

“Comparative Analysis of H2 and H∞ Robust Control Design Approaches for Dynamic Control Systems” (2023) Journal of Engineering, 29(08), pp. 1–15. doi:10.31026/j.eng.2023.08.01.

Publication Dates

References

Aghaie, Z., and Amirifar, R., 2007. H2 and H8 Controllers Design for an Active Suspension System via Riccati Equations and LMIs. In: Second International Conference on Innovative Computing, Information and Control (ICICIC 2007). pp. 341–345. Doi:10.1109/ICICIC.2007.330

Araque, J.P.B., Zavoli, A., Trotta, D. and De Matteis, G., 2021. Genetic Algorithm Based Parameter Tuning for Robust Control of Launch Vehicle in Atmospheric Flight. IEEE Access, 9, pp.108175-108189. Doi:10.1109/ACCESS.2021.3099006.

Bansal, A., and Sharma, V., 2013. Design and Analysis of Robust H-infinity Controller. Control Theory and Informatics, 3(2), pp. 7–14. https://iiste.org/Journals/index.php/CTI/article/view/6006

Gu, D.W., Petkov, P.H., and Konstantinov, M.M., 2005. . Robust Control Design with MATLAB Advanced Textbooks in Control and Signal Processing with Matlab, Springer.

Guessoum, H., Feraga, C., Mehennaoui, L., Moussa, S., and Lachouri, A., 2019. A robust performance enhancement of primary H∞ controller based on auto-selection of adjustable fractional weights: Application on a permanent magnet synchronous motor. Transactions of the Institute of Measurement and Control, 41, P.014233121882386. Doi:10.1177/0142331218823861.

Ibraheem, I.K., 2019. Anti-Disturbance Compensator Design for Unmanned Aerial Vehicle. Journal of Engineering, 26(1), pp. 86–103. Doi:10.31026/j.eng.2020.01.08.

Jafar, A., Rehman, S., Rehman, S., and Nisar, A., 2016. A Robust H infinity control law for unmanned aerial vehicle against atmospheric turbulence. Conference: 2nd IEEE International Conference on Robotics and Artificial Intelligence(ICRAI), 1-2 Nov., pp. 305–312. Doi:10.1109/ICRAI.2016.7791234.

Jiang, H., Wu, C., and Chen, B., 2022. Vibration Suppression of Hub Motor-Air Suspension Vehicle. Energies, 15(11), pp. 3916–3935. Doi:10.3390/en15113916.

Khayat, Y., Naderi, M., Shafiee, Q., Batmani, Y., Fathi, M., and Bevrani, H., 2017. Robust control of a DC-DC boost converter: H2 and H∞ techniques. In: 2017 8th Power Electronics, Drive Systems & Technologies Conference (PEDSTC). pp. 407–412. Doi:10.1109/PEDSTC.2017.7910360.

Lee, D.H., Joo, Y.H., and Tak, M.H., 2014. Periodically Time-Varying H∞ Memory Filter Design for Discrete-Time LTI Systems With Polytopic Uncertainty. IEEE Transactions on Automatic Control, 59(5), pp. 1380–1385. Doi:10.1109/TAC.2013.2289705.

Lee, M.-Y., Chen, B., Tsai, C.-Y., and Hwang, C.-L., 2021. Stochastic H∞ Robust Decentralized Tracking Control of Large-Scale Team Formation UAV Network System With Time-Varying Delay and Packet Dropout Under Interconnected Couplings and Wiener Fluctuations. IEEE Access, 9, pp. 41976-41997. Doi:10.1109/ACCESS.2021.3065127.

Li, T.-H.S., Tsai, S.-H., Lee, J.-Z., Hsiao, M.-Y., and Chao, C.-H., 2008. Robust H∞ Fuzzy Control for a Class of Uncertain Discrete Fuzzy Bilinear Systems. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 38(2), pp. 510–527. Doi:10.1109/TSMCB.2007.914706.

Maccari, L.A., Montagner, V.F., Pinheiro, H., and Oliveira, R., 2012. Robust ℋ2 control applied to boost converters: Design, experimental validation and performance analysis. Control Theory & Applications, IET, 6, pp. 1881–1888. Doi:10.1049/iet-cta.2011.0755.

Mahmood, A., Kim, Y., and Park, J., 2014. Robust H∞ autopilot design for agile missile with time-varying parameters. IEEE Transactions on Aerospace and Electronic Systems, 50(4), pp. 3082–3089. Doi:10.1109/TAES.2014.130750.

Mehta, I., Garg, V., and Abraham, R.J., 2023. Design of a robust controller for a DC motor with structured uncertainties. International Journal of Dynamics and Control, 11(2), pp. 680–688. Doi:10.1007/s40435-022-01025-0.

Petersen, I.R., 2009. Robust H∞ Control of an Uncertain System Via a Stable Output Feedback Controller. IEEE Transactions on Automatic Control, 54(6), pp. 1418–1423. Doi:10.1109/TAC.2009.2017980.

Saud, L.J., and Hasan, A.F., 2018. Design of an Optimal Integral Backstepping Controller for a Quadcopter. Journal of Engineering, 24(5), pp. 46–65. Doi:10.31026/j.eng.2018.05.04.

Si, Y., Korada, N., Lei, Q., and Ayyanar, R., 2022. A Robust Controller Design Methodology Addressing Challenges Under System Uncertainty. IEEE Open Journal of Power Electronics, 3, pp. 402–418. Doi:10.1109/OJPEL.2022.3190254.

Sojoodi, M., and Majd, J. V., 2010. A technical approach to H2 and H∞ control of a flexible transmission system. In: 2010 IEEE Conference on Robotics, Automation and Mechatronics. pp. 124–128. Doi:10.1109/RAMECH.2010.5513200.

Szabolcsi, R., 2018. Robust Control System Design for Small UAV Using H2-Optimization. Land Forces Academy Review, 23(2), pp. 151–159. Doi:10.2478/raft-2018-0018.

Vasičkaninová, A., and Bakošová, M., 2015. Robust controller design for a heat exchanger. In: 2015 20th International Conference on Process Control (PC). pp. 113–118. Doi:10.1109/PC.2015.7169947.

Wang, D., He, H., and Liu, D., 2017. Adaptive Critic Nonlinear Robust Control: A Survey. IEEE Transactions on Cybernetics, 47(10), pp. 3429–3451. Doi:10.1109/TCYB.2017.2712188.

Werner, H., 2006. Book review: Robust Control Design with Matlab, D.W. Gu., P.H. Petkov and M. M. Konstantinov. Automatica, pp.1619–1620.

Yaghi, M., and Önder Efe, M., 2020. H2/H∞ -Neural-Based FOPID Controller Applied for Radar-Guided Missile. IEEE Transactions on Industrial Electronics, 67(6), pp. 4806–4814. Doi:10.1109/TIE.2019.2927196.

Similar Articles

You may also start an advanced similarity search for this article.