Cell-Free Massive MIMO Energy Efficiency Improvement by Access Points Iterative Selection

Main Article Content

Sara Saad Mohammed
Aqiel Neama Almamori

Abstract

Cell-free massive multiple-input multiple-output (CF-MIMO) system has been considered a promising technology for 5G and 6G networks for its ability to handle the rise in demand effectively. With CF-MIMO, improved energy efficiency can be obtained from straightforward signal processing. One of the potential problems in CF-MIMO systems is high power consumption due to the large numbers of distributed Access Points (APs), which decrease energy efficiency. This research proposes a modified algorithm to improve overall energy efficiency by reducing total power consumption via using the APs selection technique while maintaining the system's sum of rate. The technique used for APs selection is the largest large-scale-based selection, where each user is served by a subset of APs that offer the best channel condition rather than by all of APs. Total energy efficiency has been calculated for three cases: without APs selection, fixed APs selection, and dynamic APs selection (proposed approach). The simulation result shows that the proposed approach significantly improves energy efficiency by 45% at the signal-to-noise ratio (SNR) equal to 6 dB than the case where the selection of APs is fixed due to the optimal APs selection for each user.

Article Details

How to Cite
“Cell-Free Massive MIMO Energy Efficiency Improvement by Access Points Iterative Selection” (2024) Journal of Engineering, 30(03), pp. 129–142. doi:10.31026/j.eng.2024.03.09.
Section
Articles

How to Cite

“Cell-Free Massive MIMO Energy Efficiency Improvement by Access Points Iterative Selection” (2024) Journal of Engineering, 30(03), pp. 129–142. doi:10.31026/j.eng.2024.03.09.

Publication Dates

Received

2023-03-15

Accepted

2023-05-23

Published Online First

2024-03-01

References

Abdul Majed, M.M.S., and Omran, B.M., 2020. Pilot based channel estimation and synchronization in OFDM system. Journal of Engineering, 26(6), pp. 50–59. Doi:100.31026/j.eng.2020.06.04.

Al-Haddad, M.K., 2014. PAPR reduction of OFDM signals using clipping and coding. Journal of Engineering, 20(8), pp. 18-34. Doi:100.31026/j.eng.2014.08.02.

Al-Hubaishi, A.S., Noordin, N.K., Sali, A., Subramaniam, S., Mansoor, A.M., and Ghaleb, S.M., 2020. Partial pilot allocation scheme in multi-cell massive MIMO systems for pilot contamination reduction. Energies, 13(12). Doi:100.3390/en13123163.

Almamori, A., and Mohan, S., 2017. A Spectrally efficient algorithm for massive MIMO for mitigating pilot contamination. In: 2017 IEEE 38th Sarnoff Symposium. Newark, NJ, USA. pp. 1–5. Doi:100.1109/SARNOF.2017.8080384.

Almamori, A., and Mohan, S., 2020. Estimation of channel state information (CSI) in cell-free massive MIMO based on time of arrival (ToA). Wireless Personal Communications, 114(2), pp. 1825–1831. Doi:100.1007/s11277-020-07450-8.

Ammar, H.A., Adve, R., Shahbazpanahi, S., Boudreau, G., and Srinivas, K.V., 2021. User-centric cell-free massive MIMO networks: A survey of opportunities, challenges and solutions. IEEE Communications Surveys & Tutorials, 24(1), pp. 611-652. Doi:100.48550/arXiv.2104.14589

Björnson, E., Hoydis, J., and Sanguinetti, L., 2017. Massive MIMO networks: Spectral, energy, and hardware efficiency. Foundations and Trends in Signal Processing, 11(3–4), pp. 154–655. Doi:10.1561/2000000093.

Björnson, E., and Sanguinetti, L., 2019, July. Cell-free versus cellular massive MIMO: What processing is needed for cell-free to win?. In 2019 IEEE 20th International Workshop on Signal Processing Advances in Wireless Communications (SPAWC) (pp. 1-5). IEEE. Doi:100.1109/SPAWC.2019.8815488.

Björnson, E., and Sanguinetti, L., 2019, September. A new look at cell-free massive MIMO: Making it practical with dynamic cooperation. In 2019 IEEE 30th annual international symposium on personal, Indoor and Mobile Radio Communications (PIMRC) (pp. 1-6). IEEE. Doi:100.48550/arXiv.1906.10853.

Bjornson, E., and Sanguinetti, L., 2020. Scalable cell-free massive MIMO systems. IEEE Transactions on Communications, 68(7), pp. 4247–4261. Doi:100.1109/TCOMM.2020.2987311.

Buzzi, S., and D’Andrea, C., 2017. Cell-free massive MIMO: User-centric approach. IEEE Wireless Communications Letters, 6(6), pp. 706–709. Doi:100.1109/LWC.2017.2734893.

Buzzi, S., D’Andrea, C., Fresia, M., Zhang, Y.P., and Feng, S., 2021. Pilot assignment in cell-free massive MIMO based on the Hungarian algorithm. IEEE Wireless Communications Letters, 10(1), pp. 34–37. Doi:100.1109/LWC.2020.3020003.

Chataut, R., and Akl, R., 2020. Massive MIMO systems for 5G and beyond networks—overview, recent trends, challenges, and future research direction. Sensors, 20(10), P. 2753. Doi:100.3390/s20102753.

Chen, S., Zhang, J., Zhang, J., Björnson, E., and Ai, B., 2022. A survey on user-centric cell-free massive MIMO systems. Digital Communications and Networks, 8(5), pp. 695-719. Doi:100.1016/j.dcan.2021.12.005.

Chen, Z., and Bjornson, E., 2018. Channel hardening and favorable propagation in cell-free massive MIMO with stochastic geometry. IEEE Transactions on Communications, 66(11), pp.5205–5219. Doi:100.1109/TCOMM.2018.2846272.

Dao, H.T., and Kim, S., 2020. Effective Channel gain-based access point selection in cell-free massive MIMO systems. IEEE Access, 8, pp. 108127–108132. Doi:100.1109/ACCESS.2020.3001270.

Demir, Ö.T., Björnson, E., and Sanguinetti, L., 2021. Foundations of user-centric cell-free massive MIMO. Foundations and Trends in Signal Processing, 14(3–4), pp. 162–472. Doi:100.1561/2000000109.

Idan, S.S., and Al-Haddad, M.K., 2023. Performance of STBC based MIMO-OFDM using pilot-aided channel estimation. Journal of Engineering, 29(6), pp. 17–29. Doi:100.31026/j.eng.2023.06.02.

Imoize, A.L., Obakhena, H.I., Anyasi, F.I., and Sur, S.N., 2022. A review of energy efficiency and power control schemes in ultra-dense cell-free massive MIMO systems for sustainable 6G wireless communication. Sustainability, 14(17), P.11100. Doi:100.3390/su141711100.

Interdonato, G., 2020. Cell-free massive MIMO: Scalability, Signal processing and power control (Vol. 2090). Linköping University Electronic Press.

Kassam, J., Castanheira, D., Silva, A., Dinis, R., and Gameiro, A., 2023. A Review on Cell-Free Massive MIMO Systems. Electronics, 12(4), P.1001. Doi:100.3390/electronics12041001.

Lin, X., Xu, F., Fu, J., and Wang, Y., 2022. Resource allocation for TDD cell-free massive MIMO systems. Electronics, 11(12), P.1914. Doi:100.3390/electronics11121914.

Nayebi, E., Ashikhmin, A., Marzetta, T.L., and Yang, H., 2015. Cell-free massive MIMO systems. In: 2015 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA. pp. 695–699. Doi:100.1109/ACSSC.2015.7421222.

Nayebi, E., Ashikhmin, A., Marzetta, T.L., Yang, H., and Rao, B.D., 2017. Precoding and Power Optimization in Cell-Free Massive MIMO Systems. IEEE Transactions on Wireless Communications, 16(7), pp. 4445–4459. Doi:100.1109/TWC.2017.2698449.

Ngo, H.Q., Ashikhmin, A., Yang, H., Larsson, E.G., and Marzetta, T.L., 2017. Cell-Free Massive MIMO Versus Small Cells. In: IEEE Transactions on Wireless Communications. Institute of Electrical and Electronics Engineers Inc. pp. 1834–1850. Doi:100.1109/TWC.2017.2655515.

Ngo, H.Q., Tran, L.N., Duong, T.Q., Matthaiou, M., and Larsson, E.G., 2018. On the Total Energy Efficiency of Cell-Free Massive MIMO. IEEE Transactions on Green Communications and Networking, pp. 25–39. Doi:100.1109/TGCN.2017.2770215.

Nguyen, L.D., Duong, T.Q., Ngo, H.Q., and Tourki, K., 2017. Energy efficiency in cell-free massive MIMO with zero-forcing precoding design. IEEE Communications Letters, 21(8), pp. 1871–1874. Doi:100.48550/arXiv.1704.03288.

Obakhena, H.I., Imoize, A.L., Anyasi, F.I., and Kavitha, K.V.N., 2021. Application of cell-free massive MIMO in 5G and beyond 5G wireless networks: A survey. Journal of Engineering and Applied Science, 68(1), pp. 1-4. Doi:100.1186/s44147-021-00014-y.

Omer, D.S., Hussein, M.A., and Mina, L.M., 2020. Ergodic capacity for evaluation of mobile system performance. Journal of Engineering, 26(10), pp. 135–148. Doi:100.31026/j.eng.2020.10.10.

Palhares, V.M.T., de Lamare, R.C., Flores, A.R., and Landau, L.T.N., 2020. Iterative AP selection, MMSE precoding and power allocation in cell-free massive MIMO systems. IET Communications, 14(22), pp. 3996–4006. Doi:100.1049/iet-com.2020.0627.

Sheikh, T.A., 2022. Performance improvement of cell free massive MIMO system using user clustering and access point selection technique. Research Square, version 1. Doi:100.21203/rs.3.rs-884208/v1.

Tripathi, S.C., Trivedi, A., and Rajoria, S., 2018. Power Optimization of cell free massive MIMO with zero-forcing beamforming technique. In: 2018 Conference on Information and Communication Technology (CICT). Jabalpur, India. pp. 1–4. Doi:100.1109/INFOCOMTECH.2018.8722368.

Vu, T.X., Chatzinotas, S., Shahbaz Panahi, S., and Ottersten, B., 2020. Joint power allocation and access point selection for cell-free massive MIMO. ICC 2020-IEEE International Conference on Communications (ICC), Dublin, Ireland. Doi:100.1109/ICC40277.2020.9148948.

Zheng, J., Zhang, J., Björnson, E., Li, Z., and Ai, B., 2022. Cell-free massive MIMO-OFDM for high-speed train communications. in IEEE Journal on Selected Areas in Communications, 40(10), pp. 2823–2839. Doi:100.1109/JSAC.2022.3196088.

Zhou, S., Zhao, M., Xu, X., Wang, J., and Yao, Y., 2003. Distributed wireless communication system: a new architecture for future public wireless access. IEEE Communications Magazine, 41(3), pp. 108-113. Doi:100.1109/MCOM.2003.1186553.

Similar Articles

You may also start an advanced similarity search for this article.