Improving the Direction of Arrival Estimation Using the Parasitic Subspace Generated by Active-Parasitic Antenna (APA) Arrays

Main Article Content

Rabah Abduljabbar Jasem

Abstract

The improvement in Direction of Arrival (DOA) estimation when the received signals impinge on Active-Parasitic Antenna (APA) arrays will be studied in this work. An APA array consists of several active antennas; others are parasitic antennas. The responses to the received signals are measured at the loaded terminals of the active element. The terminals of the parasitic element are shorted. The effect of the received signals on the parasites, i.e., the induced short-circuit current, is mutually coupled to the active elements. Eigen decomposition of the covariance matrix of the measurements of the APA array generates a third subspace in addition to the traditional signal and noise subspaces generated by the all-active antenna receiving array. This additional subspace, the parasitic subspace, is accompanied by very small eigenvalues (approaching zero). Hence, a complete orthogonality between this subspace and the column space of the steering matrix of the array can be obtained. As a result, better resolution in estimating the DOA can be achieved. Several simulations in conjunction with the MUSIC algorithm, which have been conducted in this work, depict that the APA array outperforms the all-active antenna array as a direction finder, regardless of the size of the array, the number of active elements, or the number of measurement snapshots. Furthermore, super-resolution DOA estimation can be achieved when a subset of the parasitic subspace is used as if the measurement were noiseless. Also, the APA array contributes to very small RMSE values over a wide range of S/N of the received signals.


 

Article Details

How to Cite
“Improving the Direction of Arrival Estimation Using the Parasitic Subspace Generated by Active-Parasitic Antenna (APA) Arrays ” (2024) Journal of Engineering, 30(01), pp. 173–189. doi:10.31026/j.eng.2024.01.11.
Section
Articles

How to Cite

“Improving the Direction of Arrival Estimation Using the Parasitic Subspace Generated by Active-Parasitic Antenna (APA) Arrays ” (2024) Journal of Engineering, 30(01), pp. 173–189. doi:10.31026/j.eng.2024.01.11.

Publication Dates

References

Balanis, C.A., 2016. Antenna theory: analysis and design. 4th ed. John Wiley and Sons.

Chandran, S., 2005. Advances in direction-of-arrival estimation. Artech House, INC.

Chen, Z., 2019. Review of direction of arrival estimation algorithms for partial discharge localisation in transformers. IET Science, Measurement and Technology, 13(4), pp. 529-535. Doi:10.1049/iet-smt.2018.5297.

Chen, Z., Gokeda, G., and Yu, Y., 2010. Introduction to direction-of-arrival estimation. Boston: Artech House.

El Zooghby, A., 2005. Smart Antenna Engineering. London: Artech house.

Eranti, P.K., and Barkana, B.D., 2022. An overview of direction-of-arrival estimation methods using adaptive directional time-frequency distributions. Electronics, 11(9), P. 1321. Doi:10.3390/electronics11091321.

Ferreira, T.N., Netto, S.L., and Diniz, P.S.R., 2008. Beamspace covariance-based DoA estimation. IEEE 9th Workshop on Signal Processing Advances in Wireless Communications, Recife, Brazil, pp. 136-140. Doi:10.1109/SPAWC.2008.4641585.

Foutz, J., Spanias, A., and Banavar, M.K., 2008. Narrowband direction of arrival estimation for antenna arrays. Morgan and Claypool Publishers.

Golub, G.H., and Van Loan, C.F., 2013. Matrix Computations. 4th ed. Baltimore: The Johns Hopkins University Press.

Gupta, I.J., and Ksienski, A.A., 1983. Effect of mutual coupling on the performance of adaptive arrays. IEEE Transactions on Antennas and Propagation, AP-31(5). Doi:10.1109/TAP.1983.1143128

Hamid, U., Wyne, S., and Butt, N.R., 2023. Joint model-order and robust doa estimation for underwater sensor arrays. Sensors, 23 (12), P. 5731. Doi:10.3390/s23125731.

Hefferon, J., 2017. Linear Algebra. 3rd ed. Vermont, USA.

Horn, R.A., and Johnson, C.R., 2013. Matrix analysis. 2nd ed. New York. Cambridge University Press.

Hui, H.T., 2004. A new definition of mutual impedance for application in dipole receiving antenna arrays. IEEE Antennas and Wireless Propagation Letters, 3, pp. 364-367. Doi:10.1109/LAWP.2004.841209

Hui, H.T., and Lu, S., 2006. Receiving mutual impedance between two parallel dipole antennas. IEEE Region 10 Conference, Hong Kong, China, pp. 1-4. Doi:10.1109/TENCON.2006.343692.

Islam, M.R., Chamok, N.H., and Ali, M., 2012. Switched parasitic dipole antenna array for high-data-rate body-worn wireless applications. IEEE Antennas and Wireless Propagation Letters, 11, pp. 693-696. Doi:10.1109/LAWP.2012.2204949.

Jasem, R.A., 2020. High resolution direction of arrival estimation with switched active switched parasitic antenna arrays. Perth, Australia: (Doctoral dissertation, Curtin University).

Jasem, R.A., 2023. Directive and steerable radiation pattern using SASPA Array. Journal of Engineering, 29(3), pp. 1–14. Doi:10.31026/j.eng.2023.03.01.

Jing, H., Wang, H., Liu, Z., and Shen, X., 2018. DOA estimation for underwater target by active detection on virtual time reversal using a uniform linear array. Sensors, 18(8), P. 2458, Doi:10.3390/s18082458.

Kausar, A., Mehrpouyan, H., Sellathurai, M., Qian, R., and Kausar, S., 2016. Energy Efficient Switched Parasitic Array Antenna for 5G Networks and IoT, Loughborough Antennas Propagation Conference (LAPAC). Doi:10.1109/LAPC.2016.7807569.

Lan, T., Huang, K., Jin, L., Xu, X., Sun, X., and Zhong, Z., 2022. DOA estimation algorithm for reconfigurable intelligent surface co-prime linear array based on multiple signal classification approach. Information, 13(2), P. 72. Doi:10.3390/info13020072.

Lui, H.-S., Hui, H.T., and Leong, M.S., 2009. A note on the mutual-coupling problems in transmitting and receiving antenna arrays. IEEE Antennas and Propagation Magazine, 51(5), pp. 171-176. Doi:10.1109/MAP.2009.5432083

Roy, R., and Kailath, T., 1989. ESPRIT – Estimation of signal parameters via rotational invariance techniques. IEEE Transactions on Acoustics, Speech, and Signal Processing, 37(7), pp. 984-995. Doi:10.1109/29.32276

Schmidt, R.O., 1986. Multiple emitter location and signal parameter estimation. IEEE Transactions on Antennas and Propagation, 34(3), pp. 276-280. Doi:10.1109/TAP.1986.1143830

Shaghaghi, M., and Vorobyov, S.A., 2015. Subspace leakage analysis and improved DOA estimation with small sample size. IEEE Transactions on Signal Processing, 63(12), pp. 3251-3265. Doi:10.1109/TSP.2015.2422675

Sun, C., and Yang, Y.X., 2004. On beampattern design for beamspace music. Acoust. Sci., and Tech., 25(1), pp. 2-8. Doi:10.1250/ast.25.2.

Svantesson, T., and Wennstrom, M., 2001. High-resolution direction finding using a switched parasitic antenna. Singapore, in Proc. 11th IEEE Signal Processing Workshop on Statistical Signal Processing, pp. 508–511. Doi:10.1109/SSP.2001.955334

Thiel, D.V., and Smith, S., 2002. Switched parasitic antennas for cellular communications. Artech House.

Tuncer, E., and Friedlander, B., 2009. Classical and modern direction-of-arrival estimation. London, Academic Print.

Van Trees, H.L., 2002. Optimal array processing theory. Part IV of Detection, Estimation, and Modulation Theory. New York, John Wiley and Sons, Inc.

Wan, L., Han, G., Shu, L., Chan, S., and Zhu, T., 2016. The application of DOA estimation approach in patient tracking systems with high patient density. IEEE Transactions on Industrial Informatics., 12, pp. 2353-2364. Doi:10.1109/TII.2016.2569416.

Yamada, H., Ogawa, Y., and Yamagucji, Y., 2005. Mutual coupling compensation in array antenna for high-resolution DOA estimation. Proceedings of ISAP2005, SEOUL, KOREA

Yu, Y., and Hui, H.T., 2011. Design of Mutual compensation network for a small receiving monopole array. IEEE Transactions on Microwave Theory and Techniques, 59(9), pp. 2241-2245. Doi: 10.1109/TMTT.2011.2160728

Zhang, R., Xu, K., Quan, Y., Zhu, S., and Xing, M., 2021. Signal Subspace Reconstruction for DOA detection using quantum-behaved particle swarm optimization. Remote Sens., 13 (13), P. 2560. Doi:10.3390/rs13132560.

Zhao, T., Luo, C., Zhou, J., Guo, D., Chen, N., and Casaseca-de-la-Higuera, P., 2020. DoA prediction based beamforming with low training overhead for highly-mobile UAV communication with cellular networks. Appl. Sci. , 10(13), P. 4420. Doi:10.3390/app101344.

Similar Articles

You may also start an advanced similarity search for this article.