Global NAVIGATION Satellite System Contribution for Observing the Tectonic Plate Movements: Status and Perspectives

Main Article Content

Oday Yaseen Mohamed Zeki

Abstract

The long-term monitoring of land movements represents the most successful application of the Global Navigation Satellite System (GNSS), particularly the Global Positioning System. However, the application of long term monitoring of land movements depends on the availability of homogenous and consistent daily position time series of stations over a period of time. Such time series can be produced very efficiently by using Precise Point Positioning and Double Difference techniques based on particular sophisticated GNSS processing softwares. Nonetheless, these rely on the availability of GNSS products which are precise satellite orbit and clock, and Earth orientation parameters. Unfortunately, several changes and modifications have been made periodically on the policy of producing these products which led to degradation in the consistency of these products over time. For the long term monitoring of land movements, it is essential that any such developments and changes can also be used to produce improved products that go back in time, to enable the homogeneous reprocessing of archived observation data. This paper deals with two main themes. Firstly, it demonstrates the significant and imperative role of the GNSS in geological applications by addressing major global and regional studies of the Earth’s deformation which represent one of the main and essential applications in satellite geodesy. The role of the continues GPS measurements in this application is highlighted and discussed for modeling global and regional plate motions and modeling Glacial Isostatic Adjustment. Secondly, this paper locates the most important obstacles which stand behind the inability to use the GNSS in applications of long-term monitoring of land movements.

Article Details

Section

Articles

How to Cite

“Global NAVIGATION Satellite System Contribution for Observing the Tectonic Plate Movements: Status and Perspectives” (2014) Journal of Engineering, 20(12), pp. 132–149. doi:10.31026/j.eng.2014.12.09.

References

 Alhamadani, O. 2012. Precise satellite Orbit and Clock Generation for Long-Term Monitoring of Land Movemenrts using GNSS PhD Thesis, University of Nottingham, United Kingdom.

 Altamimi, Z., Sillard, P. & Boucher, C. 2002. ITRF2000: A new release of the International Terrestrial Reference Frame for earth science applications. Journal of Geophysical Research, 107, 2214.

 Altamimi, Z., Sillard, P. & Boucher, C. 2003. The impact of a No-Net-Rotation Condition on ITRF2000. Geophysical Research Letters, 30, 1064.

 Angermann, D., Klotz, J. & Reigber, C. 1999. Space-geodetic estimation of the Nazca-South America anguler vector. Earth and Planetary Science Letters, 171, 329-334.

 Argus, D. F. & Gordon, R. G. 1991a. Current Sierra Nevada-North America motion from very long baseline interferometry:Implications for th kinematics of the western United States". Geology, Vol. 19; no. 11, 1085-1088.

 Argus, D. F. & Gordon, R. G. 1991b. No-net-rotation model of current plate velocities incorporating plate motion model NUVEL-1. Geophysical Research Letters, 18, 2039-2042.

 Argus, D. F. & Heflin, M. B. 1995. Plate motion and crustal deformation estimated with geodetic data from the Global Positioning System. Geophysical Research Letters, 22, 1973-1976.

 Argus, D. F., Gordon, R. G., Heflin, M. B., Ma, C., Eanes, R. J., Willis, P., Peltier, W. R. & Owen, S. E. 2010. The angular velocities of the plates and the velocity of Earth's centre from space geodesy. Geophysical Journal International, 180, 913-960.

 Blewitt, G. 1993. Advances in Global Positioning System technology for geodynamics investigations. In: Smith, D. E. & Turcotte, D. L. (eds.) Contributions of Space Geodesy to Geodynamics: Technology. Washington DC: Pub. by American Geophysical Union.

 Blewitt, G., Heflin, M. B., Hurst, K. J., Jefferson, D. C., Webb, F. H. & Zumberge, J. F. 1993. Absolute far-field displacements from the 28 June 1992 Landers earthquake sequence. Nature, 361, 340-342.

 Bock, Y., Agnew, D. C., Fang, P., Genrich, J. F., Hager, B. H., Herring, T. A., Hudnut, K. W., King, R. W., Larsen, S., Minster, J. B., Stark, K., Wdowinski, S. & Wyatt, F. K. 1993. Detection of crustal deformation from the Landers earthquake sequence using continuous geodetic measurements. Nature, 361, 337-340.

 Bouin, M. N. & Wöppelmann, G. 2010. Land motion estimates from GPS at tide gauges: a geophysical evaluation.. Geophysical Journal International, 180, 193-209.

 Cazenave, A., Valette, J. J. & Boucher, C. 1992. Positioning Results with DORIS on SPOT2 After First Year of Mission. Journal of Geophysical Research, 97, 7109-7119.

 Chang, Z.-Q., Gong, H.-L., Zhang, J.-F. & Gong, L.-X. 2007. A Feasible Approach for Improving Accuracy of Ground Deformation Measured by D-InSAR. Journal of China University of Mining and Technology, 17, 262-266.

 Chao, B. F., Dehant, V., Gross, R. S., Day, R. D., Salstein, D. A., Watkins, M. M. & Wilson, C. R. 2000. Space geodesy monitors mass transports in global geophysical fluids. Eos, Transactions, American Geophysical Union, 81, 247,249,250.

 Demets, C. & Dixon, T. H. 1999. New kinematic models for Pacific-North America motion from 3 Ma to present, I: Evidence for steady motion and biases in the NUVEL-1A Model. Geophysical Research Letters, 26, 1921-1924.

 Demets, C., Gordon, R. G., Argus, D. F. & Stein, S. 1990. Current plate motions. Geophysical Journal International, 101, 425-478.

 Demets, C., Gordon, R. G., Argus, D. F. & Stein, S. 1994. Effect of recent revisions to the geomagnetic reversal time scale on estimates of current plate motions. Geophysical Research Letters, 21, 2191-2194.

 Demets, C., Gordon, R. G. & Argus, D. F. 2010. Geologically current plate motions. Geophysical Journal International, 181, 1-80.

 Dietrich, R., Rülke, A., Ihde, J., Lindner, K., Miller, H., Niemeier, W., Schenke, H.-W. & Seeber, G. 2004. Plate kinematics and deformation status of the Antarctic Peninsula based on GPS. Global and Planetary Change, 42, 313-321.

 Dietrich, R., Rülke, A. & Scheinert, M. 2005. Present-day vertical crustal deformations in West Greenland from repeated GPS observations. Geophysical Journal International, 163, 865-874.

 Dixon, T. H. 1993. GPS measurement of relative motion of the Cocos and Caribbean Plates and strain accumulation across the Middle America Trench. Geophysical Research Letters, 20, 2167-2170.

 Dixon, T. H., Gonzalez, G., Lichten, S. M., Tralli, D. M., Ness, G. E. & Dauphin, J. P. 1991. Preliminary determination of Pacfic-North America relative motion in the southern Gulf of Calfornia using the Global Positioning System. Geophysical Research Letters, 18, 861-864.

 Drewes, H. 1998. Combination of VLBI, SLR, and GPS determined station velocities for actual plate kinematic and crustal deformation models. In: Feissel, M. (ed.) IAG Symposia, Springer, 1998.

 Drewes, H. & Angermann, D. 2001. The Actual Plate Kinematic and Crustal Deformation Model 2000 (APKIM2000) as a Geodetic Reference System. AIG 2001 Scientific Assembly. Budapest, 2-8 Sept 2001.

 Elósegui, P., Davis, J. L., Jaldehag, R. T. K., Johansson, J. M., Niell, A. E. & Shapiro, I. I. 1995. Geodesy using the Global Positioning System: The effects of signal scattering on estimates of site position. Journal of Geophysical Research, 100, 9921-9934.

 Gendt, G. & Ferland, R. 2010. Availability of repro1" products". IGSMAIL-6136 (http://igscb.jpl.nasa.gov/mail/igsmail/2010/msg00084.html).

 Hammond, W. C., Blewitt, G. & Kreemer, C. 2011. Block modeling of crustal deformation of the northern Walker Lane and Basin and Range from GPS velocities. Journal of Geophysical Research, 116, B04402.

 Jian-Qing, S. & Ting-Chen, J. 2010. Study the feasibility of airborne LIDAR on areal earth's crust deformation surveying. Geoscience and Remote Sensing (IITA-GRS), 2010 Second IITA International Conference. Qingdao.

 Johansson, J. M., Davis, J. L., Scherneck, H. G., Milne, G. A., Vermeer, M., Mitrovica, J. X., Bennett, R. A., Jonsson, B., Elgered, G., Elósegui, P., Koivula, H., Poutanen, M., Rönnäng, B. O. & Shapiro, I. I. 2002. Continuous GPS measurements of postglacial adjustment in Fennoscandia 1. Geodetic results. Journal of Geophysical Research, 107, 2157.

 Kayen, R., Pack, R. T., Bay, J., Sugimoto, S. & Tanaka, H. 2006. Terrestrial-LIDAR Visualization of Surface and Structural Deformations of the 2004 Niigata Ken Chuetsu, Japan, Earthquake, EERI.

 Khan, S. A., Wahr, J., Leuliette, E., Van Dam, T., Larson, K. M. & Francis, O. 2008. Geodetic measurements of postglacial adjustments in Greenland. Journal of Geophysical Research, 113, B02402.

 King, M., Altamimi, Z., Boehm, J., Bos, M., Dach, R., Elosegui, P., Fund, F., Hernández-Pajares, M., Lavallee, D., Mendes Cerveira, P., Penna, N., Riva, R., Steigenberger, P., Van Dam, T., Vittuari, L., Williams, S. & Willis, P. 2010. Improved Constraints on Models of Glacial Isostatic Adjustment: A Review of the Contribution of Ground-Based Geodetic Observations. Surveys in Geophysics, 31, 465-507.

 Lambert, A., Courtier, N., Sasagawa, G. S., Klopping, F., Winester, D., James, T. S. & Liard, J. O. 2001. New constraints on Laurentide postglacial rebound from absolute gravity measurements. Geophysical Research Letters, 28, 2109-2112.

 Lambeck, K. 2004. Sea-level change through the last glacial cycle: geophysical, glaciological and palaeogeographic consequences. Comptes Rendus Geosciences, 336, 677-689.

 Lambeck, K., Smither, C. & Ekman, M. 1998. Tests of glacial rebound models for Fennoscandinavia based on instrumented sea- and lake-level records. Geophysical Journal International, 135, 375-387.

 Larson, K. M. & Freymueller, J. 1995. Relative motions of the Australian, Pacific and Antarctic Plates estimated by the Global Positioning System. Geophysical Research Letters, 22, 37-40.

 Larson, K. M. & Van Dam, T. 2000. Measuring postglacial rebound with GPS and absolute gravity. Geophysical Research Letters, 27, 3925-3928.

 Larson, K. M., Freymueller, J. T. & Philipsen, S. 1997. Global plate velocities from the Global Positioning System. Journal of Geophysical Research, 102, 9961-9981.

 Massonnet, D. & Feigl, K. L. 1998. Radar Interferometry and its Application to Changes in the Earth's Surface Reviews of Geophysics, 36, 441-500.

 Mazzotti, S., Lambert, A., Courtier, N., Nykolaishen, L. & Dragert, H. 2007. Crustal uplift and sea level rise in northern Cascadia from GPS, absolute gravity, and tide gauge data. Geophysical Research Letters, 34, L15306.

 Mitrovica, J. X., Milne, G. A. & Davis, J. L. 2001. Glacial isostatic adjustment on a rotating earth. Geophysical Journal International, 147, 562-578.

 Muller, J. R. & Harding, D. J. 2007. Using LIDAR Surface Deformation Mapping to Constrain Earthquake Magnitudes on the Seattle Fault in Washington State. USA. Urban Remote Sensing Joint Event. Paris.

 Nikolaidis, R. 2002. Observation of geodetic and seismic deformation with the Global Positioning System. PhD Thesis, University of California, San Diego.

 Ohzono, M., Tabei, T., Doi, K., Shibuya, K. & Sagiya, T. 2006. Crustal movement of Antarctica and Syowa Station based on GPS measurements. Earth Planets Space" 58 (No. 7), 795-804.

 Peltier, W. R. 1994. Ice age paleotopography. Science, 265, 195-201.

 Peltier, W. R. 1998. Postglacial Variations in the Level of the Sea: Implications for Climate Dynamics and Solid-Earth Geophysics. Reviews of Geophysics, 36, 603.

 Pérez, O. J., Bilham, R., Bendick, R., Velandia, J. R., Hernández, N., Moncayo, C., Hoyer, M. & Kozuch, M. 2001. Velocity field across the Southern Caribbean Plate Boundary and estimates of Caribbean/South‐American Plate Motion using GPS Geodesy 1994–2000. Geophysical Research Letters, 28, 2987-2990.

 Prawirodirdjo, L. & Bock, Y. 2004. Instantaneous global plate motion model from 12 years of continuous GPS observations. Journal of Geophysical Research, 109, B08405.

 Ray, J. 2011. International GNSS Service: Data Reprocessing Campaign. Online: http://acc.igs.org/reprocess.html , Date accessed 03 August .

 Raymond, C. A., Ivins, E. R., Heflin, M. B. & James, T. S. 2004. Quasi-continuous global positioning system measurements of glacial isostatic deformation in the Northern Transantarctic Mountains. Global and Planetary Change, 42, 295-303.

 Rothacher, M., Steigenberger, P., Dietrich, R., Fritsche, M. & Rűlke, A. 2004. Reprocessing of the Global GPS Network - First Results. Poster Presentation, IGS workshop, Bern.

 Robaudo, S. & Harrison, C. G. A. 1993. Plate tectonics from SLR and VLBI data, in Contributions of Space Geodesy and Geodynamics: Crustal Dynamics. Geodynamics Series 51-71, AGU, Washington, D. C.

 Sato, K. 1993. Tectonic plate motion and deformation inferred from very long baseline interferometry. Tectonophysics, 220, 69-87.

 Segall, P. & Davis, J. L. 1997. "GPS Applications for Geodynamics and Earthquake studies". Earth Planet. Sci, 25, 301-336.

 Sella, G. F., Dixon, T. H. & Mao, A. 2002. REVEL: A model for Recent plate velocities from space geodesy. Journal of Geophysical Research, 107, 2081.

 Sengoku, A. 1998. A plate motion study using Ajisai SLR data. Earth Planets Space, vol.50 no.8, 611-628.

 Smith, D. E., Kolenkiewicz, R., Dunn, P. J., Robbins, J. W., Torrence, M. H., Klosko, S. M., Williamson, R. G., Pavlis, E. C. & Douglas, N. B. 1990. Tectonic motion and deformation from satellite laser ranging to LAGEOS. Journal of Geophysical Research, Vol. 95, 22,013-22,041.

 Soudarin, L. & Cazenave, A. 1993. Global geodesy using Doris data on SPOT‐2" Geophysical Research Letters, 20, 289-292.

 Soudarin, L. & Cazenave, A. 1995. Large-scale tectonic plate motions measured with the DORIS Space Geodesy System. Geophysical Research Letters, 22, 469-472.

 Sousa, J. J., Ruiz, A. M., Hanssen, R. F., Bastos, L., Gil, A. J., Galindo-Zaldívar, J. & Sanz De Galdeano, C. 2010. PS-InSAR processing methodologies in the detection of field surface deformation--Study of the Granada basin (Central Betic Cordilleras, southern Spain). Journal of Geodynamics, 49, 181-189.

 Teferle, F. N. 2003. Strategies for long-term monitoring of tide gauges using GPS. by Felix Norman Teferle. Thesis (Ph.D.), University of Nottingham.

 Teferle, F. N., Orliac, E. J. & Bingley, R. M. 2007. An assessment of Bernese GPS software precise point positioning using IGS final products for global site velocities. GPS Solutions, 11, 205-213.

 Tushingham, A. M. & Peltier, W. R. 1991. Ice-3G: a new global model of late Pleistocene deglaciation based upon geophysical predictions of post-glacial relative sea level change. Journal of Geophysical Research, 96, 4497-4523.

 Velicogna, I. & Wahr, J. 2002. A method for separating Antarctic postglacial rebound and ice mass balance using future ICESat Geoscience Laser Altimeter System, Gravity Recovery and Climate Experiment, and GPS satellite data. Journal of Geophysical Research, 107, pp. ETG 20-1.

 Wahr, J., Van Dam, T., Larson, K. & Francis, O. 2001. Geodetic measurements in Greenland and their implications. Journal of Geophysical Research, 106, 16,657-16,581.

 Wei, M., Sandwell, D. & Smith-Konter, B. 2010. Optimal combination of InSAR and GPS for measuring interseismic crustal deformation. Advances in Space Research, 46, 236-249.

 Whitehouse, P. 2009. Glacial isostatic adjustment and sea-level change. Technical Report. Durham University.

 Zerbini, S., Richter, B., Rocca, F., Van Dam, T. & Matonti, F. 2007. A Combination of Space and Terrestrial Geodetic Techniques to Monitor Land Subsidence: Case Study, the Southeastern Po Plain, Italy. Journal of Geophysical Research, 112, B05401.

 Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M. & Webb, F. H. 1997. Precise point positioning for the efficient and robust analysis of GPS data from large networks. Journal of Geophysical Research, 102, 5005-5017.

Similar Articles

You may also start an advanced similarity search for this article.