HYDRODESULFURIZATION OF THIOPHENE OVER COMO/ AL2O3 CATALYST USING FIXED- AND FLUIDIZED-BED REACTORS

Main Article Content

Abdul Halim A-K Mohammed
Saad Hanash Ammar

Abstract

The present work reports a direct experimental comparison of the catalytic hydrodesulfurization of
thiophene over Co-Mo/Al2O3 in fixed- and fluidized-bed reactors under the same conditions. An
experimental pilot plant scale was constructed in the laboratories of chemical engineering department,
Baghdad University; fixed-bed unit (2.54 cm diameter, and 60cm length) and fluidized-bed unit (diameter of 2.54 cm and 40 cm long with a separation zone of 30 cm long and 12.7 cm diameter). The affecting
variables studied in the two systems were reaction temperature of (308 – 460) oC, Liquid hourly space
velocity of (2 – 5) hr-1, and catalyst particle size of (0.075-0.5) mm. It was found in both operations that the
conversion increases with increasing of reaction temperature, slightly decreases with increasing of liquid
hourly space velocity and not affected by particle size. Also a kinetic analysis was performed for thiophene
hydrodesulfurization reaction in fixed bed reactor and the results indicate that the reaction kinetics are not affected by pore and film diffusion limitations. The results of the comparison between the two reactors indicate that a low conversion was obtained in a fluidized bed than in fixed bed over the range of conditions studied. The lower conversion can be attributed to the gas that bypasses the bed in the form of bubbles or channels.

Article Details

How to Cite
“HYDRODESULFURIZATION OF THIOPHENE OVER COMO/ AL2O3 CATALYST USING FIXED- AND FLUIDIZED-BED REACTORS” (2011) Journal of Engineering, 17(01), pp. 92–102. doi:10.31026/j.eng.2011.01.07.
Section
Articles

How to Cite

“HYDRODESULFURIZATION OF THIOPHENE OVER COMO/ AL2O3 CATALYST USING FIXED- AND FLUIDIZED-BED REACTORS” (2011) Journal of Engineering, 17(01), pp. 92–102. doi:10.31026/j.eng.2011.01.07.

Publication Dates

References

• Davidson, J.F. and Harrison, D. "Fluidization", Academic Press, London, (1971).

• Kunii D. and Levenspiel O., "Fluidization Engineering", Krieger Publishing Co., New York, (1977).

• Smith J. M., "Chemical Engineering Kinetics", 3ed ed., McGraw-HILL, London, (1981).

• Charles G. H., "An introduction to chemical engineering kinetics and reactor design", JOHN WILEY & SONS, New York, (1977).

• Kolboe S. and Amberg C. H., Canadian Journal of Chemistry. Volume 44 (1966).

• Van Parijs I. A. and Fromen G. F., Ind. Eng. Chem. Prod. Res. Dev., Vol. 25, No. 3, (1986).

• Ghanbari K. and et. al. Petroleum & Coal 48(2) 33-36 (2006)

Similar Articles

You may also start an advanced similarity search for this article.