ALKYLATION OF BENZENE WITH LONG CHAIN OLEFINS OVER SOLID-ACID CATALYST

Main Article Content

Abdul Halim A. K. Mohammed
Ali M. Ridha

Abstract

This investigation is concerned with the linear alkylbenzene production reaction by the alkylation of benzene with long chain olefins C10-C13 over various prepared solid acid catalysts. The alkylation process was studied at different reaction temperature, Weight hourly space velocities and with constant pressure and benzene/olefin ratio. The liquid-phase of alkylation of benzene with olefins carried out over prepared
tungstophosphoric acid supported on SiO2 with 5, 10, 20 and 30 wt. % loading catalysts in a fixed bed reactor. Prepared tungstophosphoric acid supported over silica catalyst with 30 % loading gave the highest conversion of olefin to linear alkylbenzene (94% conversion) at 398K and 5h-1. The study of the kinetics of benzene alkylation with olefins over these prepared catalysts reveals that the reaction is second order. The value of Thiele modulus for each prepared catalysts is lower than 0.4 which means that diffusion free regime and the surface reaction is the limiting step for the alkylation process.

Article Details

How to Cite
“ALKYLATION OF BENZENE WITH LONG CHAIN OLEFINS OVER SOLID-ACID CATALYST” (2009) Journal of Engineering, 15(2), pp. 3620–3632. doi:10.31026/j.eng.2009.02.08.
Section
Articles

How to Cite

“ALKYLATION OF BENZENE WITH LONG CHAIN OLEFINS OVER SOLID-ACID CATALYST” (2009) Journal of Engineering, 15(2), pp. 3620–3632. doi:10.31026/j.eng.2009.02.08.

Publication Dates

References

- Cavalli L., Divo C., Giuffrid G., Rodici P., Valtorta L. and Zatta A., “Proceedings 3rd CESIO International Surfactants Congress” London, 1-5 June 1992, P 105.

- Alul H.R., “Ind. Eng. Chem. Prod. Rev. Dev.”, 1,7 (1968).

- Olson A.C., “Ind. Eng. Chem.”, Vol. 52, No. 10, 833 (1960).

- Moreno A., Cohen L. and Berna J.L., “Surfactant Detergent”, 25, 216 (1988).

- Sebuluky R.T. and Henke A. M., “Ind. Eng. Chem. Des. Dev.”, 10, 2, 272 (1971).

- Young L. B. and Skillman N.J., US Patent 4 301 316 (1979).

- Young L. B. and Skillman N.J., US Patent 4 301 317 (1981)

- Ming-Yuan H., Zhonghui L. and Enze M., “Catal. Today”, 2 , 321 (1988).

- Cao Y., Kessas R., Naccache C. and Y.B., “Appl. Catal. A: Gen.” 184, 231 (1999).

- Da Z., Han Z., Magnoux P. and Guisnet M., “Appl. Catal. A: Gen., 215, 45 (2001).

- Da Z., Magnoux P. and Guisnet M., “Appl. Catal. A: Gen.”, 182, 407 (1999).

- Wang B., Lee C. W., Tian-Xi C. and Sang-Eon P., “Bull. Korearn Chem. Soc.”, 22, 9, 1056 (2001).

- Bouncer H. A., Eur. Patent 0 160 144 (1984).

- Le Q. N., Marler D. O., Mc Williams J. P., Rubin M. K., Shim J. and Wong S.S., US Patent 4 962 256 (1990).

- Tejero J. L., Danvila A. M., US Patent 5 146 062 (1993).

- Tejero J. L., D. Algeciras A. M., US Patent 5 157 158 (1992).

- Sivasanker S. and Thangaraj A., “J. Catal.”, 138, 386 (1992).

- Sivasanker S., Thangaraj A., Abulla R. A. and Ratnasamy P., in Guczi L., Solymosi F. and Tetenyi P. (Editors), New Frontiers in Catalysis, Proceedings of the 10th International Congress on Catalysis, 19-24 July, 1992, Budapest, Hungary (Studies in Surface Science and Catalysis, Vol. 75), Elsevier, Amsterdam, 1993, 75, P. 397.

- Tanabe K. and Holderich W. A., “Appl. Catal. A: Gen.” 181, 399 (1999).

- Imai T., Kocal J. A. and Vora B. V., “Stud. Surf. Sci. Catal.”, 92, 339 (1995).

- Levenspiel O., “Chemical Reaction Engineering”, 3rd Edition, John- Wiley & Sons, (1999).

- Furman N. H., “Standard Methods of Chemical Analysis”, Vol. one, Sixth Edition, USA (1968).

- Xing-Dong Y., Jung-Nam P., Wang J. and Sang-Eon P., “Korean J. Chem. Eng.”, 19, 4, 607 (2002).

- Satterfield, “Heterogeneous catalysis in Practice”, McGraw-Hill, USA (1980).

- Fogler H. S., “Elements of Chemical Reaction Engineering”, Second Edition, Prentice-Hall of India Private Limited, New Delhi (1997).

- Hougen and Watson, “Part Three Kinetics and Catalysis”, Eleventh Printing, John Wiley & Sons, INC., New York (1966).