Urban Metabolism of Energy Consumption in Cities
Main Article Content
Abstract
The idea of the research came from the importance of the issue of energy consumption in cities as the cities of the world, in general, and Iraqi cities in particular, face significant environmental challenges from carbon emissions. The research problem revolves around the increase in the consumption of non-renewable energy using traditional methods, as is the case in the city of Zaafaraniya and this leads to an increase in the carbon footprint locally and globally and poses a threat to the lives of residents. This requires verification to find solutions through understanding the city’s input and output processes as the urban metabolism. The research will summarize the concept of greenhouse gases, types of energy sources, measure the energy footprint of the case study, and the relationship of land use to energy. The research provided results that indicate the continuing population increase in cities, as the population of the Al- Zaafaraniya reached (889,000 people) in 2023. This was related to a continuous rise in energy consumption. The electricity footprint amounted to (491,507 tCO2) which is the highest, and the fuel footprint of gasoline consumption amounted to (477,988 tCO2). At the same time, the diesel footprint amounted to (411,877 tCO2). There is a variance between different land uses. Residential use consumes 40% of energy. By following strategies to reduce energy consumption through an efficient city layout that encourages public transportation, walking, waste recycling, and using clean, renewable energy. It leads to lowering the carbon footprint.
Article Details
How to Cite
Publication Dates
Received
Accepted
Published Online First
References
Al-Najjar, H. M. T., 2015. Study of energy gains by orientation of solar collectors in Baghdad city. Journal of Engineering, 21(10), pp. 17-35. Doi:10.31026/j.eng.2015.10.02
Al-Rafo, S., Shaheen, B., 2008. Sustainable environmental planning & designing as an energy conservation basics. Journal of Engineering, 14(03), pp. 420-442. Doi:10.31026/j.eng.2008.03.03
Archer, R., 2020. Geothermal energy. In Future Energy, Elsevier, pp. 431-445. Doi:10.1016/B978-0-08-102886-5.00020-7
Azevedo, A., Bettencourt, P., Almeida, P. B., Santos, A. C., Abreu-Lima, C., Hense, H. W., and Barros, H., 2007. Increasing number of components of the metabolic syndrome and cardiac structural and functional abnormalities–cross-sectional study of the general population. BMC Cardiovascular Disorders, 7, pp. 1-9. Doi:10.1186/1471-2261-7-17
Bancheva, S., 2014. Integrating the concept of urban metabolism into planning of sustainable cities: analysis of the eco2 cities initiative. Development Planning Unit, University College London. Doi:10.13140/RG.2.2.13693.77280
Blanco, M. I., 2009. The economics of wind energy. Renewable and Sustainable Energy Reviews, 13(6-7), pp. 1372-1382. Doi:10.1016/j.rser.2008.09.004
Boersema, J. J., and Reijnders, L., 2009. Principles of environmental sciences Netherland, pp. 3-14. Doi:10.1007/978-1-4020-9158-2
Butera, F. M., Morello, E., Pastore, M. C., and Leonforte, F., 2018. Energy and resource efficient urban neighbourhood design principles for tropical countries. Practitioner’s guidebook, UN-HABITAT, Nairobi, Kenya, HS Number: HS/058 E, 18. Doi:10.1016/B978-0-08-102074-6.00017-6
Currie, P. K., Musango, J. K., and May, N. D., 2017. Urban metabolism: a review with reference to Cape Town. Cities, 70, pp. 91-110. Doi:10.1016/j.cities.2017.06.005
Elshimy, M., El-Aasar, K.M., 2020. Carbon footprint, renewable energy, non-renewable energy, and livestock: testing the environmental Kuznets curve hypothesis for the Arab world. Environ Dev Sustain, pp. 6985–7012. Doi:10.1007/s10668-019-00523-0
Engel‐Yan, J., Kennedy, C., Cuddihy, J., 2007. The changing metabolism of cities. Journal of Industrial Ecology, 11(2), pp. 43-59. Doi:10.1162/jie.2007.1107
Ersoy, S. R., Terrapon-Pfaff, J., 2022. Sustainable transformation of Iraq's energy system development of a phase model. https://nbnresolving.org/urn:nbn:de:bsz:wup4-opus-78914.
Estabraq Sh. Abdulbari, 2021. Carbon footprint and its implications for city sustainability, M.Sc. thesis in Urban and Regional Planning at the university of Baghdad, Iraq.
Evans, R. L., 2007. Fueling our future, an introduction to sustainable energy. Cambridge University Press - UK. Doi:10.1017/CBO9780511807015
Iraqi Ministry of Planning, 2023. Electricity indicators report. Iraqi Ministry of Electricity- Statistics, p5. https://cosit.gov.iq/documents/industrial/water&electric
Foster, J. B., 2000. Marx’s ecology: Materialism and nature. NYU Press-USA. Doi:10.2307/3341498
Ghassemi, A., 2001. Handbook of pollution control and waste minimization. CRC Press - USA. Doi:10.1142/8699
Gladek, E., van Odijk, S., Theuws, P., Herder, A., 2014. Circular buiksloterham/tranditioning Amsterdam to a Circular City. Metabolic, Studiodots & DELVA Landscape Architects. Doi:10.13140/RG.2.1.2926.5120
Golubiewski, N., 2012. Is there a metabolism of an urban ecosystem and ecological critique. Ambio, 41(7), pp. 751-764. Doi:10.1007%2Fs13280-011-0232-7
Harvey, M., Pilgrim, S., 2011. The new competition for land: Food, energy, and climate change. Food policy, 36, pp. 40-51. Doi:10.1016/j.foodpol.2010.11.009
IEA, Energy Policies of Countries, 2005. Review. https://www.iea.org/reports/energy-policies-of-iea-countries-2005-review
Kennedy, C., Pincetl, S., and Bunje, P., 2011. The study of urban metabolism and its applications to urban planning and design. Environmental pollution, 159(8-9), pp. 1965-1973. Doi:10.1016/j.envpol.2010.10.022
Khitoliya, R.K., 2004. Environmental pollution management and control for sustainable development. S. Chand and Company, New Delhi, 309. Doi:10.54536/ajec.v1i2.602
Le Nechet, F., 2012. Urban spatial structure, daily mobility and energy consumption: a study of 34 european cities. Cybergeo: European Journal of Geography. Doi:10.4000/cybergeo.24966
Ma, C., Ju, M. T., Zhang, X. C., Li, H. Y., 2011. Energy consumption and carbon emissions in China. Procedia Environmental Sciences, pp. 1-9. Doi:10.1016/j.proenv.2011.03.001
Malmodin, J., Lundén, D., 2018. The energy and carbon footprint of the global ICT and E&M sectors 2010–2015. Sustainability, 10(9). Doi:10.3390/su10093027.
Newman, D. M., Heptinstall, J., Matelon, R. J., Savage, L., Wears, M. L., Beddow, J., Mens, P. F., 2008. A magneto-optic route toward the in vivo diagnosis of malaria: preliminary results and preclinical trial data. Biophysical journal, 95(2), pp. 994-1000. Doi:10.1529/biophysj.107.128140
Obaid, Z., 2023. Activating the role of spatial planning in the urban security system, M.Sc. thesis in Urban and Regional Planning at university of Baghdad in Iraq.
Pandey, D., Agrawal, M., 2011. Carbon footprint: current methods of estimation. Environmental monitoring and assessment, 178, pp. 135-160. Doi:10.1007/s10661-010-1678-y
Pincetl, S., Bunje, P., & Holmes, T., 2012. An expanded urban metabolism method: toward a systems approach for assessing urban energy processes and causes. Landscape and urban planning, 107(3), Elsevier, pp. 193-202. Doi:10.1016/j.landurbplan.2012.06.006
RenSMART, 2024. The Energy Information Source. https://www.rensmart.com/Calculators/KWH-to-CO2
Restrepo, J. D. C., and Morales-Pinzón, T., 2018. Urban metabolism and sustainability: precedents, genesis and research perspectives. Resources, Conservation and Recycling, 131, pp. 216-224. Doi:10.1016/j.resconrec.2017.12.023
Saguin, K., 2019. Urban metabolism. The Wiley Blackwell Encyclopedia of Urban and Regional Studies, pp. 1-5. Doi:10.1002/9781118568446.eurs0378
Salim, A., 2008. Sustainable architecture levels. Journal of Engineering, 14(04), pp. 560–583. Doi:10.31026/j.eng.2008.04.04.
Sawant, S., Babaleshwar, B., 2015. A New Method of Assessment and Equations on Carbon Footprint. J. Appl. Geology and Geophysics, 3, pp. 52-59. Doi:10.9790/0990-03415259
Shaheen, B. R., 2016. Environment friendly Eco-City. Journal of Engineering, 22(2), pp. 1-20. Doi:10.31026/j.eng.2016.02.11
Twidell, J., 2021. Renewable Energy Resources, USA. Doi:10.4324/9780429452161
UK Government GHG Conversion Factors for Company Reporting, UK-GHG, 2020. https://assets.publishing.service.gov.uk/media/62aed8f6d3bf7f0af9463486/ghg-conversion-factors-2022-full-set.xls
UNEP, 2018. Urban Metabolism For Resource-Efficient Cities. https://resourceefficientcities.org/wp-content/uploads/2017/09/Urban-Metabolism-for-Resource-Efficient-Cities.
UN-HABITAT, 2008. Energy Consumption in Cities. https://unhabitat.org/topic/urban-energy
Wiśniewski, P., and Kistowski, M., 2017. Carbon footprint as a tool for local planning of low carbon economy.
Rocznik Ochrona Środowiska, P. 19. Doi:10.12912/23920629/66984.
Wolman, A., 1965. The metabolism of cities. Scientific American, 213(3), PP. 178-193. Doi:10.1038/scientificamerican0965-178
Yıldırım, H. H. Y., Gültekin, A. B., Tanrıvermiş, H., 2017. Evaluation of cities in the context of energy efficient urban planning approach. In IOP Conference Series: Materials Science and Engineering, IOP Publishing, (Vol. 245, No. 7, p. 072051). Doi:10.1088/1757-899X/245/7/072051