An Approach to Solar Photovoltaic Systems Simulation Utilizing Builder Block: A Case Study of A 100 MW System
Main Article Content
Abstract
This paper offers a new design, simulation, and trying out a strategy for the Photovoltaic (PV) gadget producing 100 MW· The work explores how different irradiance and PV temperature tiers have an effect on the output power· To enhance the PV system, the proposed work utilizes the Maximum Power Point Tracking (MPPT) technique with a DC-DC boost converter and a 3-phase tie inverter· These components can improve output voltage and convert it into AC electricity for integration into the application grid· The Block Builder tool is taken into consideration a key factor of this work, which enables accurate simulation of various environmental conditions inclusive of a wide range of solar radiation and PV temperature· Consequently, the electric power generated underneath varying parameters can be exactly assessed· In this work, 4 cases are simulated to assess the performance of the proposed system.. The simulation results show that the proposed design gives varying output powers based on changes in solar radiation and PV temperature, which demonstrates the adaptability of the system. In Case 4, the simulation results indicate that when increasing the solar radiation, the energy starts to increase up to 85 MW when solar radiation equals 1000 W/m², which occurs at 3 seconds.
Article Details
Section
How to Cite
References
Akhtar, M. U., and Iqbal, M. T., 2024. Modeling and simulation of grid-tied Three-Phase PV system in Lahore, Pakistan. European Journal of Electrical Engineering and Computer Science, 8(4), pp. 23-32. https://doi.org/10.24018/ejece.2024.8.1.603.
Akorede, M. F., Hizam, H., and Pouresmaeil, E., 2010. Distributed energy resources and benefits to the environment. Renewable and sustainable energy reviews, 14(2), pp. 724-734. https://doi.org/10.1016/j.rser.2009.10.025.
Al‐Nimr, M. D. A., Kiwan, S., and Sharadga, H., 2018. Simulation of a novel hybrid solar photovoltaic/wind system to maintain the cell surface temperature and to generate electricity. International Journal of Energy Research, 42(3), pp. 985-998. https://doi.org/10.1002/er.3885.
Alwash, J. H., Hassan, T. K., and Kamel, S. W. 2014. Analysis and control of PWM buck-boost AC chopper fed single-phase capacitor run induction motor. Journal of Engineering, 20(06), pp. 160-178. https://doi.org/10.31026/j.eng.2014.06.11.
Benaissa, O. M., Hadjeri, S., Zidi, S. A., and Benaissa, O. ,2017. Modeling and simulation of grid-connected PV generation system using Matlab/Simulink. International Journal of Power Electronics and Drive System (IJPEDS), 8(1), pp. 392-401. http://doi.org/10.11591/ijpeds.v8.i1.pp392-401.
Chang, R., Bai, L., and Hsu, C.-H. 2021. Solar power generation prediction based on deep learning. Sustainable energy technologies and assessments, 47(10), 101354. https://doi.org/10.1016/j.seta.2021.101354.
Chow, S. K., Lee, E. W., and Li, D. H., 2012. Short-term prediction of photovoltaic energy generation by intelligent approach. Energy and Buildings, 55(12), pp. 660-667. https://doi.org/10.1016/j.enbuild.2012.08.011.
Das, S., 2021. Short-term forecasting of solar radiation and power output of 89.6 kW solar PV power plant. Materials Today: Proceedings, 39(5), pp. 1959-1969. https://doi.org/10.1016/j.matpr.2020.08.449.
Deville, L., Theristis, M., King, B. H., Chambers, T. L., and Stein, J. S., 2024. Open‐source photovoltaic model pipeline validation against well‐characterized system data. Progress in Photovoltaics: Research and Applications, 32(5), pp. 291-303. https://doi.org/10.1002/pip.3763.
Frederiksen, C. a. F., and Cai, Z. 2022. Novel machine learning approach for solar photovoltaic energy output forecast using extra-terrestrial solar irradiance. Applied Energy, 306(124), pp.118152. https://doi.org/10.1016/j.apenergy.2021.118152.
Hansen, J., Sato, M., Kharecha, P., Von Schuckmann, K., Beerling, D. J., Cao, J., Marcott, S., Masson-Delmotte, V., Prather, M. J., and Rohling, E. J., 2017. Young people's burden: requirement of negative CO 2 emissions. Earth System Dynamics, 8(3), pp. 577-616. https://doi.org/10.5194/esd-8-577-2017.
Hashim, E. T., and Abboud, A. A., 2016. Temperature effect on power drop of different photovoltaic modules. Journal of Engineering, 22(5), pp. 129-143. https://doi.org/10.31026/j.eng.2016.05.09.
Hashim, E. T., and Hussien, S. A. M., 2018. Synchronous buck converter with Perturb and Observe Maximum Power Point Tracking Implemented on a Low-Cost Arduino microcontroller. Journal of Engineering, 24(2), pp. 16-33. https://doi.org/10.31026/j.eng.2018.02.02.
Hosouli, S., Gomes, J., Loris, A., Pazmiño, I.-A., Naidoo, A., Lennermo, G., and Mohammadi, H., 2023. Evaluation of a solar photovoltaic thermal (PVT) system in a dairy farm in Germany. Solar Energy Advances, 3(2023), pp. 100035. https://doi.org/10.1016/j.seja.2023.100035.
Hu, H., Xie, N., Fang, D., and Zhang, X., 2018. The role of renewable energy consumption and commercial services trade in carbon dioxide reduction: Evidence from 25 developing countries. Applied Energy, 211(1 February 2018), pp. 1229-1244. https://doi.org/10.1016/j.apenergy.2017.12.019.
Hussain, A., Arif, S. M., and Aslam, M., 2017. Emerging renewable and sustainable energy technologies: State of the art. Renewable and sustainable energy reviews, 71(May 2017), pp. 12-28. https://doi.org/10.1016/j.rser.2016.12.033.
Iqbal, T., Micheal, O. M., and Ogbomo, E. ,2023. Design and analysis of a hybrid power system for Port Hope Simpson, Labrador. http://dx.doi.org/10.24018/ejece.2023.7.1.487.
Islam, M. A., Kassim, N. M., Alkahtani, A. A., and Amin, N., 2021. Assessing the impact of spectral irradiance on the performance of different photovoltaic technologies. Solar Radiation-Measurement, Modeling and Forecasting Techniques for Photovoltaic Solar Energy Applications. IntechOpen. https://doi.org/10.5772/intechopen.96697.
Jayaram, K., 2021. Simulation-based three-phase single-stage grid-connected inverter using solar photovoltaics. J. Univ. Shanghai Sci. Technol, 23(5). http://doi.org/10.51201/JUSST/21/05190.
Jiang, Y., Zheng, L., and Ding, X., 2021. Ultra-short-term prediction of photovoltaic output based on an LSTM-ARMA combined model driven by EEMD. Journal of Renewable and Sustainable Energy, 13(4), pp. 046103. https://doi.org/10.1063/5.0056980.
Jung, Y., Jung, J., Kim, B., and Han, S., 2020. Long short-term memory recurrent neural network for modeling temporal patterns in long-term power forecasting for solar PV facilities: Case study of South Korea. Journal of Cleaner Production, 250(6), pp. 119476. https://doi.org/10.1016/j.jclepro.2019.119476.
Kadam, P., Lahoti, G., and Shah, U. Dynamic and compact control of PV standalone system. In 2016 IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016. IEEE, pp. 1-5. https://doi.org/10.1109/ICPEICES.2016.7853454.
Konstantinou, M., Peratikou, S., and Charalambides, A. G., 2021. Solar photovoltaic forecasting of power output using LSTM networks. Atmosphere, 12(1), pp. 124. https://doi.org/10.3390/atmos12010124.
Kubba, Z., Al-Shara, K., and Al-Shakarchi, E., 2008. Computer-aided design and implementation of converter circuits applied for photovoltaic System. Journal of Engineering, 14(04), pp. 2990-3000. https://doi.org/10.31026/j.eng.2008.04.09.
Mahdavian, F., Platt, S., Wiens, M., Klein, M., and Schultmann, F., 2020. Communication blackouts in power outages: Findings from scenario exercises in Germany and France. International Journal of Disaster Risk Reduction, 46(June 2020), pp. 101628. https://doi.org/10.1016/j.ijdrr.2020.101628.
Munoz, F. D., Wogrin, S., Oren, S. S., and Hobbs, B. F., 2018. Economic inefficiencies of cost-based electricity market designs. The Energy Journal, 39(3), pp. 51-68. https://doi.org/10.5547/01956574.39.3.fmun.
Nadaleti, W. C., Dos Santos, G. B., and Lourenço, V. A., 2020. The potential and economic viability of hydrogen production from the use of hydroelectric and wind farms surplus energy in Brazil: A national and pioneering analysis. International Journal of Hydrogen Energy, 45(3), pp. 1373-1384. https://doi.org/10.1016/j.ijhydene.2019.08.199.
Patel, M., and Bohra, S. ,2023. Power management of grid-connected PV wind hybrid system incorporated with energy storage system. Future Energy, 2(3), pp. 7-19. https://doi.org/10.55670/fpll.fuen.2.3.2.
Rahman, A., Farrok, O., and Haque, M. M., 2022. Environmental impact of renewable energy source-based electrical power plants: Solar, wind, hydroelectric, biomass, geothermal, tidal, ocean, and osmotic. Renewable and Sustainable Energy Reviews, 161(June 2022), pp. 112279. https://doi.org/10.1016/j.rser.2022.112279.
Sharma, N., Acharya, A., Jacob, I., Yamujala, S., Gupta, V., and Bhakar, R. 2021. Major blackouts of the decade: Underlying causes, recommendations, and arising challenges. IEEE International Conference on Power Systems (ICPS), pp. 1-6. https://doi.org/10.1109/ICPS52420.2021.9670166.
Shi, J., Lee, W.J., Liu, Y., Yang, Y., and Wang, P., 2012. Forecasting power output of photovoltaic systems based on weather classification and support vector machines. IEEE Transactions on Industry Applications, 48(3), pp. 1064-1069. https://doi.org/10.1109/TIA.2012.2190816.
Teyabeen, A. A., and Jwaid, A. E., 2023. Modeling, validation, and simulation of solar photovoltaic modules. Electrica, 23(1). https://doi.org/10.5152/electrica.2022.21164.
Tyagi, V., Rahim, N. A., Rahim, N., Jeyraj, A., and Selvaraj, L., 2013. Progress in solar PV technology: Research and achievement. Renewable and sustainable energy reviews, 20(April 2013), pp. 443-461. https://doi.org/10.1016/j.rser.2012.09.028.
Wang, K., Herrando, M., Pantaleo, A. M., and Markides, C. N., 2019. Techno-economic assessments of hybrid photovoltaic-thermal vs. conventional solar-energy systems: Case studies in heat and power provision to sports centers. Applied Energy, 254(15 November 2019), pp. 113657. https://doi.org/10.1016/j.apenergy.2019.113657.
Wang, X.,2022. Managing the problem of too much capital: Coal power overcapacity, migrant labor sacrifice, and structural problems in contemporary Chinese political economy. Environment and Planning E: Nature and Space, 5(4), pp. 1895-1918. https://doi.org/10.1177/25148486221123418.
Wilson, G. M., Al-Jassim, M., Metzger, W. K., Glunz, S. W., Verlinden, P., Xiong, G., Mansfield, L. M., Stanbery, B. J., Zhu, K., and Yan, Y., 2020. The 2020 photovoltaic technologies roadmap. Journal of Physics D: Applied Physics, 53(49), pp. 493001. https://doi.org/10.1088/1361-6463/ab9c6a.