Linear Active Disturbance Rejection Control (ADRC) for Two Wheel Self-Balancing Robot
Main Article Content
Abstract
The application of two-wheeled self-balancing robots to real-world tasks critically depends on their ability to actively reject disturbances. The objective is to design two active disturbance rejection controllers (ADRCs) for body angle and displacement, respectively, for a two-wheeled self-balancing robot system, which is difficult to control due to strong coupling, nonlinearity, and parameter uncertainty. Based on the system dynamics, an ADRC control framework is designed to estimate and compensate for modeling errors and disturbances online. Numerical simulations are used to demonstrate the effectiveness of ADRC in different controller combinations, using Simulink MATLAB 2022a and tuning parameters by genetic algorithm (GA) to ensure good temporal performance and assist in the design parameter selection process. Studies on a real two-wheeled self-balancing vehicle show that the constructed ADRC scheme allows the vehicle to operate more than 90% more stably and effectively than the assumed control strategy, which can effectively realize the self-balancing and steering process with the performance of fast adjustment speed, high accuracy, and strong robustness as well when compared with the PID (proportional-integral-derivative) controller under the same parameter setting.
Article Details
Section
How to Cite
References
Abbas, N.H. and Sami, A.R., 2018. Tuning of PID controllers for quadcopter system using cultural exchange imperialist competitive algorithm. Journal of Engineering, 24(2), pp.80-99. https://doi.org/10.31026/j.eng.2018.02.06.
Abdul-Adheem, W.R., Ibraheem, I.K., Azar, A.T. and Humaidi, A.J., 2020. Improved active disturbance rejection-based decentralized control for MIMO nonlinear systems: comparison with the decoupled control scheme. Applied Sciences, 10(7), p.2515. https://doi.org/10.3390/app10072515.
Al-Araji, A.S., 2014. Applying cognitive methodology in designing on-line auto-tuning robust PID controller for the real heating system. Journal of Engineering, 20(09), pp.43-61. https://doi.org/10.31026/j.eng.2014.09.04.
Allawi, Z.T., Ibraheem, I.K. and Humaidi, A.J., 2019. Fine-tuning meta-heuristic algorithm for global optimization. Processes, 7(10), p.657. https://doi.org/10.3390/pr7100657.
Alonge, F., Cirrincione, M., D’Ippolito, F., Pucci, M., and Sferlazza, A., 2017. Active disturbance rejection control of linear induction motor. IEEE Transactions on Industry Applications, 53(5), 4460-4471. https://doi.org/10.1109/ECCE.2016.7854817.
Ar-Ramahi, S.K.H., 2009. PID controller design for the satellite attitude control system. Journal of Engineering, 15(1), pp.3312-3320. https://doi.org/10.31026/j.eng.2009.01.06.
Curiel-Olivares, G., Linares-Flores, J., Guerrero-Castellanos, J.F. and Hernández-Méndez, A., 2021. Self-balancing based on active disturbance rejection controller for the two-in-wheeled electric vehicle, experimental results. Mechatronics, 76, p.102552. https://doi.org/10.1016/j.mechatronics.2021.102552.
Fu, C. and Tan, W., 2016. Tuning of linear ADRC with known plant information. ISA transactions, 65, pp.384-393. https://doi.org/10.1016/j.isatra.2016.06.016.
Gao, Z., 2003, June. Scaling and bandwidth-parameterization based controller tuning. In Acc.(4), pp. 989-994. https://doi.org/10.1109/ACC.2003.1242516.
Han, J., 2002. From PID technology to auto disturbance rejection control technology. Control Engineering of China, 9(3), pp.13-18. https://doi.org/10.1109/TIE.2008.2011621.
Han, J., 2009. From PID to active disturbance rejection control. IEEE transactions on Industrial Electronics, 56(3), pp.900-906. https://doi.org/10.1109/TIE.2008.2011621.
Han, J.Q., 1995. Nonlinear state error feedback control law-NLSEF. In Chinese Univ Pr (p. 211).ISBN: 9622017010, 9789622017016.
Hernández-Méndez, A., Linares-Flores, J., Sira-Ramírez, H., Guerrero-Castellanos, J.F. and Mino-Aguilar, G., 2017. A backstepping approach to decentralized active disturbance rejection control of interacting boost converters. IEEE Transactions on Industry Applications, 53(4), pp.4063-4072. https://doi.org/10.1109/TIA.2017.2683441.
Huang, Y. and Xue, W., 2014. Active disturbance rejection control: Methodology and theoretical analysis. ISA transactions, 53(4), pp.963-976. https://doi.org/10.1016/j.isatra.2014.03.003.
Ibraheem, I. K., 2020. Anti-disturbance compensator design for unmanned aerial vehicle. Journal of Engineering, 26(1), pp. 86-103. https://doi.org/10.31026/j.eng.2020.01.08.
Ibraheem, I.K. and Ibraheem, G.A., 2016. Motion control of an autonomous mobile robot using modified particle swarm optimization based fractional order PID controller. Engineeing Technology Journal, 34(13), pp.2406-2419. https://doi.org/10.30684/etj.34.13A.4.
Kang, C., Wang, S., Ren, W., Lu, Y., and Wang, B., 2019. Optimization design and application of active disturbance rejection controller based on intelligent algorithm. IEEE Access, 7, 59862-59870. https://doi.org/10.1109/ACCESS.2019.2909087.
Jin, H., Song, J., Lan, W. and Gao, Z., 2020. On the characteristics of ADRC: A PID interpretation. Science China. Information Sciences, 63(10), p.209201. https://doi.org/10.1007/s11432-018-9647-6.
Lei, Y., Xu, J., Ni, Y., Wang, Z. and Liu, W., 2019, May. Application of ADRC in track alignment detection system. In 2019 IEEE 8th Data Driven Control and Learning Systems Conference (DDCLS) (pp. 939-945). IEEE. https://doi.org/10.1109/DDCLS.2019.8909066.
Li, Y., Wang, J., and Zhang, Y.J., 2015. Self-tuning method for a linear active disturbance rejection controller. Chinese Journal of Engineering, 37(11), pp.1520-1527. https://doi.org/10.13374/j.issn2095-9389.2015.11.019.
Lima-Pérez, A., Díaz-Téllez, J., Gutiérrez-Vicente, V., Estévez-Carreón, J., Pérez-Pérez, J., García-Ramirez, R.S. and Chávez-Galán, J., 2021, November. Robust control of a two-wheeled self-balancing mobile robot. In 2021 International Conference on Mechatronics, Electronics and Automotive Engineering (ICMEAE) (pp. 196-201). IEEE. https://doi.org/10.1109/ICMEAE55138.2021.00038.
Linares-Flores, J., García-Rodríguez, C., Sira-Ramirez, H. and Ramírez-Cárdenas, O.D., 2015. Robust backstepping tracking controller for low-speed PMSM positioning system: Design, analysis, and implementation. IEEE Transactions on industrial informatics, 11(5), pp.1130-1141.. https://doi.org/10.1109/TII.2015.2471814.
Linares-Flores, J., Barahona-Avalos, J.L., Sira-Ramirez, H. and Contreras-Ordaz, M.A., 2012. Robust passivity-based control of a buck–boost-converter/DC-motor system: An active disturbance rejection approach. IEEE Transactions on Industry Applications, 48(6), pp.2362-2371. https://doi.org/10.1109/TIA.2012.2227098.
Liu, Z.H., Zhang, Y.J., Zhang, J. and Wu, J.H., 2011. Active disturbance rejection control of a chaotic system based on immune binary-state particle swarm optimization algorithm. Acta Phys. Sin. https://doi.org/10.7498/aps.60.019501.
Liu, W., Zhang, B., Guo, S., Shi, J., Ji, M. and Zheng, S., 2023. Research on active disturbance rejection control technology of two-wheel self-balancing robot. In 2023 5th International Conference on Electrical Engineering and Control Technologies (CEECT). (pp. 325-332). IEEE. https://doi.org/10.1109/CEECT59667.2023.10420693.
Mohammed, I.A., Mahir, R.A. and Ibraheem, I.K., 2011. Robust controller design for load frequency control in power systems using state-space approach. Journal of Engineering, 17(02), pp.265-278. https://doi.org/10.31026/j.eng.2011.02.06.
Mtolo, S. N., and Saha, A. K., 2021. A review of the optimization and control strategies for fuel cell power plants in a microgrid environment. IEEE Access, 9, 146900-146920. https://doi.org/10.1109/ACCESS.2021.3123181.
Paulescu, F.C., Szeidert, I., Filip, I. and Vasar, C., 2021, May. Two-wheeled self-balancing robot. In 2021 IEEE 15th International Symposium on Applied Computational Intelligence and Informatics (SACI), pp. 33-38. IEEE. https://doi.org/10.1109/SACI51354.2021.9465568.
Qi, X.H., Li, J. and Han, S.T., 2013. Adaptive active disturbance rejection control and its simulation based on BP neural network. Acta Armamentarii, 34(6), p.776. https://doi.org/10.3969/j.issn.1000-1093.2013.06.019.
Sira-Ramírez, H., Luviano-Juárez, A., Ramírez-Neria, M., and Zurita-Bustamante, E. W. 2017. Active disturbance rejection control of dynamic systems: A flatness based approach. Butterworth-Heinemann. ISBN: 978-0-12849868-2
Sira-Ramírez, H., Linares-Flores, J., García-Rodríguez, C. and Contreras-Ordaz, M.A., 2014. On the control of the permanent magnet synchronous motor: An active disturbance rejection control approach. IEEE Transactions on Control Systems Technology, 22(5), pp.2056-2063. https://doi.org/10.1109/TCST.2014.2298238.
Sira-Ramírez, H., Hernández-Méndez, A., Linares-Flores, J. and Luviano-Juárez, A., 2016. Robust flat filtering DSP based control of the boost converter. Control Theory and Technology, 14(3), pp.224-236. https://doi.org/10.1007/s11768-016-6025-6.
Tan, W. and Fu, C., 2015. Linear active disturbance-rejection control: Analysis and tuning via IMC. IEEE Transactions on Industrial Electronics, 63(4), pp.2350-2359. https://doi.org/10.1109/TIE.2015.2505668.
Wang, Z., Zu, R., Duan, D., and Li, J., 2019. Tuning of ADRC for QTR in transition process based on NBPO hybrid algorithm. IEEE Access, 7, 177219-177240. https://doi.org/10.1109/ACCESS.2019.2957318.
Wei, Z., and Huang, R., 2022. Active disturbance rejection control of two-wheeled self-balancing vehicle. In 2022 China Automation Congress (CAC) (pp. 4086-4091). IEEE. https://doi.org/10.3390/asi7020022.
Xue, W., Bai, W., Yang, S., Song, K., Huang, Y. and Xie, H., 2015. ADRC with adaptive extended state observer and its application to air–fuel ratio control in gasoline engines. IEEE Transactions on Industrial Electronics, 62(9), pp.5847-5857. https://doi.org/10.1109/TIE.2015.2435004.
Ye, D. P., Yu, J. M., and Zhou, Y. Z., 2013. Control simulation for two-wheeled self-balancing robot linear move based on active disturbance rejection controller. Advanced Materials Research, 644, 129-133. https://doi.org/10.4028/www.scientific.net/AMR.644.129.
Zheng, Q. and Gao, Z., 2016. Active disturbance rejection control: Between the formulation in time and the understanding in frequency. Control Theory and Technology, 14, pp.250-259. https:/doi.org/10.1007/s11768-016-6059-9.