Simulink Model for Monocrystalline Solar Panel Performance
Main Article Content
Abstract
The present work evaluates the effects of different solar radiation values (350, 400, 650, 900, and 1000 W/m²) and module temperature on the monocrystalline solar module output current, voltage, and power. A five-parameter model was chosen to design a simulation program to study and analyze the effects of irradiance and temperature on the output power of a solar module. Solar modules are defined by electrical factors like open circuit voltage, short circuit current, maximum power, maximum current, and maximum voltage, that not supplied by the manufacturer. The proposed work is suggested for the accurate determination model of a mono-crystalline solar module. Ideality factor calculation is by using the mathematical function, Lambert W function and series, and shunt resistances lead to extracting solar module parameters. The fitness of the five-factor formula is related to the lower RMSE average values. The average root mean square error of measured current-voltage values with the corresponding calculated values by the five-parameter model was calculated (0.0667). The lowest value of the root mean square errors of measured voltage-current characteristic values with the calculated ones is 0.022 at irradiance of 1000 W/m2 and module operation temperature of 25 °C. Certainly will enhance the present work's fitness, represented by measured data or calculated model data with RMSE equal to 0.0667. It noted that the present work is so close to other important previous work, and that certainly enhances our work fitness (represented by measured data or calculated model data) with a 0.46 percentage of power drop per degree centigrade.
Downloads
Article Details
Section
How to Cite
References
Ali M. Rasham and Mohammed A. Nima, 2025a. Performance improvement of air-based photovoltaic thermal solar systems through innovative metallic foam configurations within converging ducts. Results in Engineering 28, P. 107232. https://doi.org/10.1016/j.rineng.2025.107232
Ali M. Rasham and Mohammed A. Nima, 2025b. Comprehensive analysis of the thermoelectrical performance of an air-based photovoltaic thermal solar collector integrated with innovative gridded metal foams. Results in Engineering 27, P. 105826. https://doi.org/10.1016/j.rineng.2025.105826
Ahmed, M. A., and Mohamed, H., 2020. Exploring the potential of solar, tidal, and wind energy resources in Oman using an integrated climatic-socioeconomic approach. Renewable energy, 161, pp. 662-675. https://doi.org/10.1016/j.renene.2020.07.144
Bayhan, H., and Bayhan, M., 2011. A simple approach to determine the solar cell diode ideality factor under illumination. Solar Energy, 85(5), pp. 769–775. https://doi.org/10.1016/J.SOLENER.2011.01.009.
Buday, M. S., 2011. Measuring irradiance, temperature, and angle of incidence effects on photovoltaic modules in Auburn Hills, Michigan. Thesis for Master of Science/Sustainable Systems (Natural Resources and Environment) at the University of Michigan.
Chatzisideris, M. D., Espinosa, N., Laurent, A., and Krebs, F. C., 2016. Ecodesign perspectives of thin-film photovoltaic technologies: A review of life cycle assessment studies. Solar Energy Materials and Solar Cells, 156, pp. 2-10. https://doi.org/10.1016/j.solmat.2016.05.048
Cheng, P., and Zhan, X., 2016. Stability of organic solar cells: Challenges and strategies. Chemical Society Reviews, 45(9), pp. 2544-2582. https://doi.org/10.1039/C5CS00593K
Cui, J., Meng, F., Zhang, H., Cao, K., Yuan, H., Cheng, Y., Huang, F., and Wang, M., 2014. CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS applied materials & interfaces, 6(24), pp. 22862-22870. https://doi.org/10.1021/am507108u
Javer, C., Santiago, P., and Carlos, M., 2014. Explicit Expressions for Solar Panel Equivalent Circuit Parameters Based on Analytical Formulation and the Lambert W-Function. Energies, pp. 4098-4115. https://doi.org/10.3390/en7074098.
El-Shaer, A., Tadros, M. T. Y., and Mohamed, A. K., 2014. Effect of Light Intensity and Temperature on Crystalline Silicon Solar Modules Parameters. International Journal of Emerging Technology and Advanced Engineering, 4(8), pp. 311.http://doi.org/ 16557433/2014
Haider, M., Yang, JL 2020. Efficient and stable perovskite–silicon two-terminal tandem solar cells. Rare Met. 39, pp. 745–747. https://doi.org/10.1007/s12598-020-01430-4
Hahsim, E.T., 2016. Determination of Mono-crystalline Silicon Photovoltaic Module Parameters Using Three Different Methods. Journal of Engineering, 22(7), pp. 92-107.https://doi.org/10.31026/j.eng.2016.07.06
Hashim, E. T., and Talib, Z. R., 2018. Study of the performance of the five-parameter model for a monocrystalline silicon photovoltaic module using reference data. FME Transactions, 46, pp. 585-594. https://doi.org/10.5937/fmet1804585T
Hussein, H. S., and Hamzah A. A., 2025. Study of heat generation and power losses in MultiCrystalline Silicon photovoltaic solar module. Journal of Engineering, 31(10), pp. 65–85. https://doi.org/10.31026/j.eng.2025.10.04.
Huang, Z., Xu, W., and Yu, K. 2015. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991. https://doi.org/10.48550/arXiv.1508.01991
Katee, N. S., Abdullah, O. I., and Hashim, E. T. 2021. Extracting four solar model electrical parameters of mono-crystalline silicon (mc-Si) and thin film (CIGS) solar modules using different methods. Journal of Engineering, 27(4), pp. 16-32. https://doi.org/10.31026/j.eng.2021.04.02
Kim, W., and Choi, W., 2010. A novel parameter extraction method for the one-diode solar cell model. Solar Energy, 84(6), pp. 1008–1019. https://doi.org/10.1016/j.solener.2010.03.012.
Kosyachenko, L. A., Mathew, X., Paulson, P. D., Lytvynenko, V. Y., and Maslyanchuk, O. L. 2014. Optical and recombination losses in thin-film Cu (In, Ga) Se2 solar cells. Solar energy materials and solar cells, 130, pp. 291-302. https://doi.org/10.1016/j.solmat.2014.07.019
Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T. 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), pp. 6050-6051. https://doi.org/10.1021/ja809598r
Kung, J. T., Kesner, B., An, J. Y., Ahn, J. Y., Cifuentes-Rojas, C., Colognori, D., Jeon, Y., Szanto, A., del Rosario, B. C., Pinter, S. F., Erwin, J. A., and Lee, J. T. 2015. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Molecular Cell, 57(2), pp. 361-375. https://doi.org/10.1016/j.molcel.2014.12.006
Ma, C.C.Y., and Iqbal, M., 1984. Statistical comparison of solar radiation correlations, monthly average global and diffuse radiation on horizontal surfaces. Solar Energy, pp. 143-148. https://doi.org/10.1016/0038-092X(84)90231-7.
Ma, T, Yang, H. and Lu, L., 2014. Solar photovoltaic system modeling and performance prediction. Renew Sustain Energy Rev, 36, pp. 4–15. https://doi: 10.1016/j.rser.2014.04.057.
Messenger, R. A., and Abtahi, H. A., 2017. Photovoltaic Systems Engineering, Third edition, CRC Press, Boca Raton, Florida, pp.21-30.
Packel, E. and Yuen, D., 2004. Projectile Motion with Resistance and the Lambert Function. College Math. J., 35, pp. 337-350. https://doi.org/10.1007/s10910-018-0985-3
Parbar K. D., and Gupta, N. C., 2015. Effect of Temperature on Power Output from Different Commercially Available Photovoltaic Modules. Journal of Engineering Research and Applications, 5(1) (Part 1), pp. 148-151.
Radziemska, E., and Klugmann, E., 2002. Thermally affected parameters of the current–voltage characteristics of the silicon photocell. Energy Conversion and Management. 43(14), pp. 1889-1900. https://doi.org/10.1016/S0196-8904(01)00132-7.
Rahul, Abhishek, K., Datta, S., Biswal, B. B., and Mahapatra, S. S., 2017. Machining performance optimization for electro-discharge machining of Inconel 601, 625, 718, and 825: An integrated optimization route combining
satisfaction function, fuzzy inference system, and Taguchi approach. Journal of the Brazilian Society of Mechanical
Sciences and Engineering, 39, pp. 3499-3527. https://doi.org/10.1007/s40430-016-0659-7
Raseswari, P., 2013. Development of New Parameter Extraction Schemes and Maximum Power Point Controllers for Photovoltaic Power Systems. PhD thesis, National Institute of Technology Rourkela.
Sera, D., Teodorescu, R, and Rodriguez, P., 2007. PV panel model based on datasheet values. IEEE International Symposium on Industrial Electronics, Vigo (Spain), pp. 2392-2396. https://doi.org/10.1109/ISIE.2007.4374981.
Shao, Y., Zheng, D., Liu, L., Liu, J., Du, M., Peng, L., and Liu, S. 2024. Innovations in interconnecting layers for perovskite-based tandem solar cells. ACS Energy Letters, 9(10), pp. 4892-4921. https://doi.org/10.7498/aps.73.20241187
Spataru, S., Sera, D., Kerekes, T., Teodorescu, R., Cotfas, P. A., and Cotfas, D. T., 2014. Experiment based teaching of solar cell operation and characterization using the SolarLab platform. In Proceedings of the 7th International Workshop on Teaching in Photovoltaics (Vol. 7). Czech Technical University in Prague, Faculty of Electrical Engineering.
Van Dyk, E. E., and Meyer, E. L., 2004. Analysis of the effect of parasitic resistances on the performance of photovoltaic modules. Renewable Energy, 29, pp. 333-334. https://doi.org/10.1016/S0960-1481(03)00250-7.
Villalva, M. G., Gazoli, J. R., and Filho, E. R., 2009. Comprehensive Approach to Modeling and Simulation of Photovoltaic Arrays. IEEE Trans. Power Electron., 24(5), pp. 1198–1208. https://doi.org/10.1109/TPEL.2009.2013862.
Wang, W., Arora, R., Livescu, K., and Bilmes, J., 2015. On deep multi-view representation learning. In International Conference on machine learning, pp. 1083-1092. PMLR. https://dl.acm.org/doi/10.5555/3045118.3045234
Xu, X., Zhao, Y., Sima, J., Zhao, L., Mašek, O., and Cao, X., 2017. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technology, 241, pp. 887-899. https://doi.org/10.1016/j.biortech.2017.06.023
Yusuf, A. S., Ramalan, A. M., Abubakar, A. A., and Mohammed, I. K. 2024. Effect of Electron Transport Layers, Interface Defect Density, and Working Temperature on Perovskite Solar Cells Using SCAPS 1-D Software. East European Journal of Physics, (1), pp. 332-341. https://doi.org/10.26565/2312-4334-2024-1-31
