Application of Waste Lead Acid Battery Plastic to Produce Lightweight Masonry Units

Main Article Content

Duaa E. Aljubori
Suhair K. Al-Hubboubi
Abeer I. Alwared

Abstract

The concrete industry consumes millions of tons of aggregate comprising of natural sands and gravels, each year. In recent years there has been an increasing trend towards using recycled aggregate to save natural resources and to produce lightweight concrete. This study investigates the possibility of using waste plastic as one of the components of lead-acid batteries to replace the fine aggregate by 50 and 70% by volume of concrete masonry units. Compared to the reference concrete mix, results demonstrated that a reduction of approximately 32.5% to 39.6% in the density for replacement of 50% to 70% respectively. At 28 days curing age, the compressive strength was decreased while the water absorption increased by increasing waste plastic percentage. The leaching test revealed that lead ion extracted from the WLABP-modified concrete was within the acceptable limits. The findings of this study indicated a sustainable alternative solution for reducing the effects on the environment posed by waste plastic from lead-acid batteries.


 

Article Details

Section

Articles

How to Cite

“Application of Waste Lead Acid Battery Plastic to Produce Lightweight Masonry Units” (2019) Journal of Engineering, 25(4), pp. 90–104. doi:10.31026/j.eng.2019.04.07.

Similar Articles

You may also start an advanced similarity search for this article.