A Modified Vigenère Cipher based on Time and Biometrics features

Main Article Content

Bashar Adel Esttaifan

Abstract

Biometrics is widely used with security systems nowadays; each biometric modality can be useful and has distinctive properties that provide uniqueness and ambiguity for security systems especially in communication and network technologies. This paper is about using biometric features of fingerprint, which is called (minutiae) to cipher a text message and ensure safe arrival of data at receiver end. The classical cryptosystems (Caesar, Vigenère, etc.) became obsolete methods for encryption because of the high-performance machines which focusing on repetition of the key in their attacks to break the cipher. Several Researchers of cryptography give efforts to modify and develop Vigenère cipher by enhancing its weaknesses. The proposed method uses local feature of fingerprint represented by minutiae positions to overcome the problem of repeated key to perform encryption and decryption of a text message, where, the message will be ciphered by a modified Vigenère method. Unlike the old usual method, the key constructed from fingerprint minutiae depend on instantaneous date and time of ciphertext generation. The Vigenère table consist of 95 elements: case sensitive letters, numbers, symbols and punctuation.  The simulation results (with MATLAB 2021b) show that the original message cannot be reconstructed without the presence of the key which is a function of the date and time of generation. Where 720 different keys can be generated per day which mean 1440 distinct ciphertexts can be obtained for the same message daily.

Article Details

How to Cite
“A Modified Vigenère Cipher based on Time and Biometrics features” (2023) Journal of Engineering, 29(06), pp. 128–139. doi:10.31026/j.eng.2023.06.10.
Section
Articles

How to Cite

“A Modified Vigenère Cipher based on Time and Biometrics features” (2023) Journal of Engineering, 29(06), pp. 128–139. doi:10.31026/j.eng.2023.06.10.

Publication Dates

References

Ahmadzadeh, E., Kim, H., Jeong, O., and Moon, I., 2021. A novel dynamic attack on classical ciphers using an attention-based LSTM encoder-decoder model. IEEE Access, 9, pp. 60960-60970. doi:10.1109/ACCESS.2021.3074268

Angaye, C.O., Akinyokun, O.C., and Iwasokun, G.B., 2013. Experimental study of minutiae-based algorithm for fingerprint matching. Computer Science & Information Technology (CS & IT), pp. 33-47. doi:10.5121/csit.2013.3504

Bhargava, N., Bhargava, R., Mathuria, M., and Dixit, P., 2013. Fingerprint minutiae matching using region of interest. International Journal of Computer Trends and Technology, 4(4), pp. 515-518. https://ijcttjournal.org/Volume4/issue-4/IJCTT-V4I4P115.pdf

Dooley, J.F., 2018. History of cryptography and cryptanalysis: Codes, Ciphers, and their algorithms. Springer.

Henry E. R., 1900. Classification and Uses of Fingerprints. George Routledge and sons.

Ibrahim, D. R., Sen Teh J., and Abdullah R., 2021. An overview of visual cryptography techniques. Multimedia Tools and Applications, 80, pp. 31927–31952. doi:10.1007/s11042-021-11229-9

Jegede, A., Udzir, N.I., Abdullah, A. and Mahmod, R., 2017. State of the art in biometric key binding and key generation schemes. IJCNIS 9(3), pp. 333-344.

doi:10.17762/ijcnis.v9i3.2388

Jerjees S. A., Esttaifan B. A. and Ismaeel T. Z., 2020. Hybrid Ciphering Method Based on Chaos Logistic Map and Fingerprint Information. Journal of Engineering Science and Technology, 15(5), pp. 3013-3024. https://jestec.taylors.edu.my/Vol%2015%20issue%205%20October%202020/15_5_11.pdf

Kako, N. A., Sadeeq, H. T., and Abrahim, A. R., 2020. New symmetric key cipher capable of digraph to single letter conversion utilizing binary system. Indonesian Journal of Electrical Engineering and Computer Science, 18 (2), p. 1028. doi:10.11591/ijeecs.v18.i2.pp1028-1034

Kester, Q.A, 2012. A cryptosystem based on Vigenère cipher with varying key. International Journal of Advanced Research in Computer Engineering & Technology (IJARCET), 1 (10), pp. 108–113. https://www.researchgate.net/publication/235618077_A_cryptosystem_based_on_Vigenere_cipher_with_varying_key

Kester, Q.A., 2013. A hybrid cryptosystem based on Vigenère Cipher and columnar transposition Cipher. International Journal of Advanced Technology & Engineering Research (IJATER), 3(1), pp. 141–147. doi:10.48550/arXiv.1307.7786

LS-WL, L.A.M. and SUEN, C., 1992. Thinning methodologies comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 14(9), pp. 869-885. doi:10.1109/34.161346

Nedjah, N., Wyant, R.S., Mourelle, L.M., and Gupta, B.B., 2019. Efficient fingerprint matching on smart cards for high security and privacy in smart systems. Information Sciences, 479, pp. 622-639. doi:10.1016/j.ins.2017.12.038

Omran, S.S., Al-Khalid, A.S., and Al-Saady, D.M., 2011, September. A cryptanalytic attack on Vigenère cipher using genetic algorithm. In 2011 IEEE Conference on Open Systems, pp. 59-64. doi:10.1109/ICOS.2011.6079312

Rahmani, M. K. I., Wadhwa, N., and Malhotra, V., 2012. Alpha-qwerty Cipher: an extended Vigenère Cipher. Advanced Computing: An International Journal, 3(3), pp. 107–118. doi:10.5121/acij.2012.3311

Salih, A. M., and Mahmood, S. H., 2019. Digital Color Image Watermarking Using Encoded Frequent Mark. Journal of Engineering, 25(3), pp. 81–88. doi:10.31026/j.eng.2019.03.07

Sharif, A., and Sianipar, R., 2018. A combination of Vigenère algorithm and one time pad algorithm in the three-pass protocol. In MATEC Web of Conferences, 197, p. 03008. EDP Sciences. doi:10.1051/matecconf/201819703008

Shiltagh, N. A., Abdullah, M. Z., and Ahmed R. Zarzoor, A. R., 2019, WSN-WCCS: A Wireless Sensor Network Wavelet Curve Ciphering System. Journal of Engineering, 25(6), pp. 67–82. doi:10.31026/j.eng.2019.06.06

Subandi, A., Meiyanti, R., Sandy, C. L. M., and Sembiring, R. W., 2017. Three-pass protocol implementation in Vigenère Cipher classic cryptography algorithm with keystream generator modification. Advances in Science, Technology and Engineering Systems Journal, 2(5), pp. 1–5. doi:10.25046/aj020501

Trappe, W., 2006. Introduction to cryptography with coding theory. 2nd edition. Pearson Prentice Hall.

Uniyal, D. N., Dobhal, D. G., and Semwal, M. P., 2020. Enhanced security of encrypted text by KDMT: key-domain maximization technique. International Journal of Recent Technology and Engineering (IJRTE), 8(5), pp. 1385–1388. doi:10.35940/ijrte.E6326.018520

Willis, A.J., and Myers, L., 2001. A cost-effective fingerprint recognition system for use with low-quality prints and damaged fingertips. Pattern recognition, 34(2), pp. 255-270.

doi:10.1016/S0031-3203(00)00003-0

Wilson, P., and Garcia, M., 2006. A modified version of the Vigenère algorithm. International Journal of Computer Science and Network Security (IJCSNS), 6(3), pp. 140–143.

http://paper.ijcsns.org/07_book/200603/200603C01.pdf

Yang, W., Hu, J., Wang, S., and Stojmenovic, M., 2014. An alignment-free fingerprint bio-cryptosystem based on modified Voronoi neighbor structures. Pattern Recognition, 47(3), pp. 1309-1320. doi:10.1016/j.patcog.2013.10.001

You, X. et al., 2021. Towards 6G wireless communication networks: vision, enabling technologies, and new paradigm shifts. Science China Information Sciences, 64(1), p. 110301. doi:10.1007/s11432-020-2955-6

Zafar, W., Ahmad, T., and Hassan, M., 2014, December. Minutiae based fingerprint matching techniques. In 17th IEEE International Multi Topic Conference 2014, pp. 411-416. IEEE.

doi:10.1109/INMIC.2014.7097375

Similar Articles

You may also start an advanced similarity search for this article.