Comparative Study of Water Desalination using Reverse Osmosis (RO) and Electro-dialysis Systems (ED): Review
Main Article Content
Abstract
The increasing drinking water demand in many countries leads to an increase in the use of desalination plants, which are considered a great solution for water treatment processes. Reverse osmosis (RO) and electro-dialysis (ED) systems are the most popular membrane processes used to desalinate water at high salinity. Both systems work by separating the ionic contaminates and disposing of them as a brine solution, but ED uses electrical current as a driving force while RO uses osmotic pressure. A direct comparison of reverse osmosis and electro-dialysis systems is needed to highlight process development similarities and variances. This work aims to provide an overview of previous studies on reverse osmosis and electro-dialysis systems related to membrane module and design processes; energy consumption; cost analysis; operational problems; efficiency of saline removal; and environmental impacts of brine disposal. RO system uses osmotic pressure as a driving force to force water through the membrane with less energy than other desalination systems. The enhancements in membrane materials and power recovery of the unit have massively decreased the price of RO units. ED system uses an electrical current to push dissolved ions across ion exchange membranes. The results of this review showed that desalination plants must be integrated with renewable energy to reduce power consumption and costs related to energy. Various technologies, including treatment processes and disposal methods, must be used to control concentrated solutions resulting from desalination processes because 5 to 33% of the total cost of the desalination process is associated with brine disposal.
Article received: 07/10/2022
Article accepted: 31/10/2022
Article published: 01/04/2023
Article Details
How to Cite
Publication Dates
References
Al-Karaghouli, A., and Kazmerski, L.L., 2013. Energy consumption and water production cost of conventional and renewable-energy-powered desalination processes. Renew. Sust. Energ. Rev. 24 (2013), pp. 343–356. doi:10.1016/j.rser.2012.12.064
Al-Bazedi, G.A., El-Sayed M.M., and Abdel-Fatah, M.A., 2016. Comparison between Reverse Osmosis Desalination Cost Estimation Trends. Journal of Scientific and Engineering Research, 3(5), pp.56-62.
Al-Kaabi, A., Al-Sulaiti, H., Al-Ansari, T., and Mackey, H.R., 2021. Assessment of water quality variations on pretreatment and environmental impacts of SWRO desalination. Desalination, 500, issue 114831, ISSN 0011-9164. doi:10.1016/j.desal.2020.114831.
Allison, R.P., 2001. Electro-dialysis treatment of surface and wastewater, Ionics Technical Paper, Reprint from Proceedings of 2001 AWWA Annual Conference.
Alonso, G., del Valle, E., and Ramirez, J. R., 2020. Desalination plants. Desalination in Nuclear Power Plants, pp. 31–42. doi:10.1016/b978-0-12-820021-6.00003-x.
Balcik-Canbolat, C., Sengezer, C., Sakar, H., Karagunduz, A., and Keskinler, B. A., 2018. Study on near zero liquid discharge approach for the treatment of reverse osmosis membrane concentrate by electro-dialysis. Environ. Technol. doi:10.1080/09593330.2018.1501610
Banasiak, L., Kruttschnitt, T., and Schaefer, A., 2007. Desalination Using Electrodialysis as a Function of Voltage and Salt Concentration. Desalination. doi:205.38-46.10.1016/j.desal.2006.04.038.
Banat, F., 2007. Economic and technical assessment of desalination technologies, IWA Conference-New Technologies for Water and Wastewater Treatment in the 21st Century, Geneva, Switzerland, June 2007, pp. 6–8.
Ben A., Ines and Roboam, X., 2015. Systemic design of a reverse osmosis desalination process powered by hybrid energy system. 2014 International Conference on Electrical Sciences and Technologies in Maghreb, CISTEM 2014. doi:10.1109/CISTEM.2014.7076941.
Blandin, G., Verliefde, A.R., Comas, J., Rodriguez-Roda, I., and Le-Clech, P., 2016. Efficiently combining water reuse and desalination through forward osmosis—reverse osmosis (FO-RO) hybrids: a critical review, Membranes, 6(3), p. 37. doi:10.3390/membranes6030037
Chao Y.M., 2005. A purification process and system design using electro-dialysis reversal for tap water, Research Report, China Steel Corporation (CSC), (cited in Chao and Liang, 2008).
Chao, Y.M., and Liang, T. M., 2008. A feasibility study of industrial wastewater recovery using electro-dialysis reversal. Desalination, 221(1-3), pp. 433–439. doi:10.1016/j.desal.2007.04.065.
Cherfane, C.C., and Kim, S.E., 2012. Arab Region and Western Asia, UNESCWA. In: Managing Water under Uncertainty and Risk, UN World Water Development Report 4, Chapter 33.
Choi, J., Oh, Y., Chae, S., and Hong, S., 2019. Membrane capacitive deionization-reverse electro-dialysis hybrid system for improving energy efficiency of reverse osmosis seawater desalination. Desalination, 462, pp. 19–28. doi: 10.1016/j.desal.2019.04.003
Ghaffour N., Lattemann S., Missimer, T., Ng, K.C., Sinha, S., and Amy, G.J.A.E., 2014. Renewable energy-driven innovative energy-efficient desalination technologies. Applied Energy, 136, pp. 1155–1165. doi: 10.1016/j.apenergy.2014.03.033
Global Water Intelligence, 2018. The International Desalination Association, IDA Water Security Handbook 2017–2018, Media Analytics Ltd, United Kingdom.
Global Water Intelligence, 2019. The International Desalination Association, IDA Water Security Handbook 2019–2020, Media Analytics Ltd, United Kingdom.
Greenlee, L.F., Lawler, D.F., Freeman, B.D., Marrot, B., and Moulin, P., 2009. Reverse osmosis desalination: Water sources, technology, and today’s challenges. Water Research, 43(9), pp. 2317–2348. doi:10.1016/j.watres.2009.03.010.
Gurreri, L., Alessandro T., Andrea C. and Giorgio M., 2020. Electro-dialysis Applications in Wastewater Treatment for Environmental Protection and Resources Recovery: A Systematic Review on Progress and Perspectives, Membranes, 10(7), 146. doi:10.3390/membranes10070146.
Hansima, M.A.C.K., Ketharani, J., Samarajeewa, D.R., Nanayakkara, K.G.N., Herath, A.C., Makehelwala, M., and Weerasooriya, R., 2021. Probing fouling mechanism of anion exchange membranes used in electro-dialysis self-reversible treatment by humic acid and calcium ions. Chemical Engineering Journal Advances, 100173. doi:10.1016/j.ceja.2021.100173.
Hao, Z., Zhao, S., Li, Q., Wang, Y., Zhang, J., Wang, Z., and Wang, J., 2021. Reverse osmosis membranes with sulfonate and phosphate groups having excellent anti-scaling and anti-fouling properties. Desalination, 509, 115076. doi:10.1016/j.desal.2021.115076.
Hassan, A.A. and Reda, A.K.M., 2018, Direct Contact Membrane Distillation for Desalination Brine Solution, Journal of Engineering, 24(11), pp. 18–29. doi:10.31026/j.eng.2018.11.02.
Herrero-Gonzalez, M., Admon, N, Dominguez-Ramos, A., Ibañez, R., Wolfson, A., and Irabien, A., 2019. Environmental sustainability assessment of seawater reverse osmosis brine valorization by means of electro-dialysis with bipolar membranes. Environmental Science and Pollution Research, 27(2), pp. 1256-1266. doi:10.1007/s11356-019-04788-w.
Hube, S., Eskafi, M., Hrafnkelsdottir, K.F., Bjarnadottir, B., Bjarnadottir, M.A., Axelsdottir, S., and Wu, B., 2020. Direct membrane filtration for wastewater treatment and resource recovery: a review, Sci. Total Environ, 710, 136375. doi:10.1016/j.scitotenv.2019.136375.
Katal, R., Ying Shen, T., Jafari, I., Masudy-Panah, S., and Hossein Davood Abadi Farahani, M., 2020. An Overview on the Treatment and Management of the Desalination Brine Solution. Desalination - Challenges and Opportunities. doi:10.5772/intechopen.92661.
Khalaf, A.S. and Hassan, A.A., 2019, A Comparison Study of Brine Desalination using Direct Contact and Air Gap Membrane Distillation, Journal of Engineering, 25(11), pp. 47–54. doi:10.31026/j.eng.2019.11.04.
Korngold, E., Aronov, L., Belayev N., and Kock, K., 2005. Electro-dialysis with brine solutions oversaturated with calcium sulfate, Desalination, 172, pp. 63– 75. doi:10.1016/j.desal.2004.06.197
Korngold, E., Aronov, L., and Daltrophe, N., 2009. Electro-dialysis of brine solutions discharged from an RO plant, Desalination, 242, pp. 215–227. doi:10.1016/j.desal.2008.04.008
Kress, N., 2019. Marine Environmental Impact of Seawater Desalination Science, Management, and Policy; Elsevier Inc., Amsterdam, Netherlands.
Kumar, R., Ahmed, M., Bhadrachari, G., and Thomas, J.P., 2018. Desalination for agriculture: water quality and plant chemistry, technologies and challenges. Water Sci. Technol. Water Supply, 18 (5), pp. 1505–1517. doi:10.2166/ws.2017.229
Lee, C., Jang, J., Tin, N.T., Kim, S., Tang, C.Y., and Kim, I.S., 2020. Effect of spacer configuration on the characteristics of FO membranes: alteration of permeation characteristics by membrane deformation and concentration polarization. Environ. Sci. Technol, 54 (10), pp. 6385–6395. doi:10.1021/acs.est.9b06921
Liang T.M., 2003. Conductivity control and cost analysis of membrane technology, Conference of Effluent Conductivity Control, CTCI Foundation.
Loganathan, K., Chelme-Ayala, P., and El-Din, M.G., 2015. Treatment of basal water using a hybrid electro-dialysis reversal-reverse osmosis system combined with a low-temperature crystallizer for near-zero liquid discharge. Desalination, 363, pp. 92−98. doi:10.1016/j.desal.2015.01.020
Mayor, B., 2019, Growth patterns in mature desalination technologies and analogies with the energy field. Desalination, 457, pp. 75–84. doi:10.1016/j.desal.2019.01.029
Meneses, M., Pasqualino, J.C., Céspedes-Sánchez, R., and Castells, F., 2010. Alternatives for reducing the environmental impact of the main residue from a desalination plant. Journal of Industrial Ecology, 14, pp. 512-527. doi:10.1111/j.1530-9290.2010.00225.x.
Mengesha A., and Sahu O., 2022. Sustainability of membrane separation technology on groundwater reverse osmosis process. Cleaner Engineering and Technology, 7, p. 100457.
doi:10.1016/j.clet.2022.100457
Mikhaylin, S., and Bazinet, L., 2016. Fouling on ion-exchange membranes: Classification, characterization and strategies of prevention and control. Advances in Colloid and Interface Science, 229, pp. 34–56.
doi:10.1016/j.cis.2015.12.006.
Morillo, J., Usero, J., Rosado, D., El Bakouri, H., Riaza, A., and Bernaola, F., 2014. Comparative study of brine management technologies for desalination plants. Desalination, 336, pp. 32–49.
doi:10.1016/j.desal.2013.12.038
Mujtaba, I., Alsadaie, S., AL-OBAIDI, M., Patel, R., Sowgath, M., Manca, D., Sarkar, S., SenGupta, A., Altaee, A., Wahadj, S., Sharif, A., Zaragoza, G., Hamdan, M., and Aryafar, Ma., 2017. Desalination: Processes, Technologies, and Challenges, In book: The Water–Food–Energy Nexus, ch.1, pp. 3-67. doi:10.1201/9781315153209-2.
Nassrullah, H., Anis, S.F., Hashaikeh, R., and Hilal, N., 2020. Energy for desalination: A state-of-the-art review. Desalination, 491, 114569. doi:10.1016/j.desal.2020.114569.
Nayar, K.G., Fernandes, J., McGovern, R.K., Al-Anzi, B.S., Lienhard, J.H., 2019. Cost and energy needs of RO-ED-crystallizer systems for zero brine discharge seawater desalination. Desalination, 457, pp. 115-132, ISSN 0011-9164. doi:10.1016/j.desal.2019.01.015.
Qasim, S. R., 2000. Wastewater treatment plants: Planning, Design and Operation, (ch 24), CRC press.
Oren, Y., Korngold, E., Daltrophe, N., Messalem, R., Volkman, Y., and Aronov, L., 2010. Pilot studies on high recovery BWRO-EDR for near zero liquid discharge approach. Desalination, 261, pp. 321–330. doi:10.1016/j.desal.2010.06.010
Pankratz, T., 2012. Water desalination report, Desalination, Published in cooperation with Global Water Intelligence, 47, no. 48, pp. 1–4.
Pramanik, B.K., Shu, L., Jegatheesan, V., 2017. A review of the management and treatment of brine solutions. Environmental Science: Water Research & Technology, 3, pp. 625-658.
doi:10.1039/C6EW00339G.
Rajaeifar, M.A., Tabatabaei, M., Aghbashlo, M., Nizami, A.S., and Heidrich, O., 2019. Emissions from urban bus fleets running on biodiesel blends under real-world operating conditions: implications for designing future case studies. Renew. Sustain. Energy Rev. 111, pp. 276–292. doi:10.1016/j.rser.2019.05.004
Robert, F., Service, 2006. Desalination freshens up, Science, 313, Issue 5790, pp. 1088–1090. doi:10.1126/science.313.5790.1088.
Schunke, A.J., Hernandez Herrera, G.A., Padhye, L., and Berry, T.A., 2020. Energy recovery in SWRO desalination: current status and new possibilities, Front. Sustain. Cities, Sec. Mini review, Urban Resource Management, 2, p. 9. doi:10.3389/frsc.2020.00009.
Shahzad, M.W., Burhan, M., Ang, L., and Ng, K.C., 2017. Energy-water-environment nexus underpinning future desalination sustainability. Desalination, 413, pp. 52–64. doi:10.1016/j.desal.2017.03.009.
Shatat, M., and Riffat, S.B., 2014. Water desalination technologies utilizing conventional and renewable energy sources. International Journal of Low-Carbon Technologies, 9, pp. 1–19. doi:10.1093/ijlct/cts025
Takagi, R., Vaselbehagh, M., and Matsuyama, H., 2014. Theoretical study of the perm selectivity of an anion exchange membrane in electro-dialysis. J. Membr. Sci., 470, pp. 486–493. doi:10.1016/j.memsci.2014.07.053.
Voutchkov, N., 2018. Energy use for membrane seawater desalination – current status and trends. Desalination, 431, pp. 2–14. doi:10.1016/j.desal.2017.10.033.
World Health Organization (WHO), 2018. Drinking-water. http://www.who.int/news-room/fact-sheets/ detail/drinking-water.
Wan, C.F., Yang, T., Lipscomb, G.G., Stookey, D.J., and Chung, T.S., 2021. Design and fabrication of hollow fiber membrane modules, Hollow Fiber Membr, pp. 225–252.
doi:10.1016/B978-0-12-821876-1.00007-X.
Yin, Y., Jeong, N., and Tong, T., 2020. The effects of membrane surface wettability on pore wetting and scaling reversibility associated with mineral scaling in membrane distillation. J. Membr. Sci., 614, 118503. doi:10.1016/j.memsci.2020.118503
Zarzo, D., and Prats, D., 2018. Desalination and energy consumption. What can we expect in the near future?. Desalination, 427, pp. 1–9. doi:10.1016/j.desal.2017.10.046.