Moisture Susceptibility of Hot Mix Asphalt Mixtures Modified by Nano Silica and Subjected to Aging Process
Main Article Content
Abstract
Moisture damage is described as a reduction in stiffness and strength durability in asphalt mixtures due to moisture. This study investigated the influence of adding nano silica (NS) to the Asphalt on the moisture susceptibility of hot-mix-asphalt (HMA) mixtures under different aging conditions. NS was mixed with asphalt binder at concentrations of 2%, 4%, and 6% by weight of the binder. To detect the microstructure changes of modified Asphalt and estimate the dispersion of NS within the Asphalt, the field emission scanning electron microscope (FE-SEM) was used. To examine the performance of Asphalt mixed with NS at different aging stages (short-term and long-term aging), asphalt mixture tests such as Marshall stability, flow, and Tensile Strength Ratio Test (TSR) were performed. According to the FESEM images, the NS particles in the mixture were sufficiently dispersed. The findings demonstrate that the NS enhances pavement performance by enhancing stability and volumetric characteristics and reducing susceptibility to moisture damage. Furthermore, TSR values of aged specimens show that increasing the NS content significantly reduces susceptibility to moisture and oxidative aging.
Article Details
Section
How to Cite
References
AASHTO, R30., 2019. Standard Practice for Mixture Conditioning of Hot Mix Asphalt. American Association of State and Highway Transportation Officials, 02, pp. 1–5. https://www.in.gov/indot/div/mt/aashto/testmethods/aashto_r30.pdf.
Al-Sabaeei, A. M., Napiah, M. B., Sutanto, M. H., Alaloul, W. S., Zoorob, S. E., and Usman, A., 2022. Influence of Nanosilica Particles on the High-Temperature Performance of Waste Denim Fibre-Modified Bitumen. International Journal of Pavement Engineering, 23(2), pp. 207–20. doi:10.1080/10298436.2020.1737060.
Al-Sabaeei, A. M., Napiah, M. B., Sutanto, M. H., Alaloul, W. S., Nur I. Y., Muhammad I. K., and Saeed, S., 2021. Physicochemical, Rheological and Microstructural Properties of Nano-Silica Modified Bio-Asphalt. Construction and Building Materials, 297, 123772. doi:10.1016/j.conbuildmat.2021.123772.
Alhamali D. I., Wu, J., Liu, Q., Hassan, N. A., Yusoff, N. I. M., and Ali, S. I. A., 2016. Physical and Rheological Characteristics of Polymer Modified Bitumen with Nanosilica Particles. Arabian Journal for Science and Engineering, 41(4), pp. 1521–30. doi:10.1007/s13369-015-1964-7.
Ali, S. H., and Ismael, M. Q., 2021. Improving the Moisture Damage Resistance of HMA by Using Ceramic Fiber and Hydrated Lime. Al-Qadisiyah Journal for Engineering Sciences, 13(4), pp. 274–83. doi:10.30772/qjes.v13i4.681.
An, Z., Zhang, J., Pan, S., and Song, G., 2012. Novel peanut-like α-Fe2O3 superstructures: Oriented aggregation and Ostwald in a one-pot solvothermal process. Powder Technology, 217, pp. 274–280. doi:10.1016/j.powtec.2011.10.038
ASTM, 2018. Road and Paving Materials Vehicle Pavement Systems. Annual Book of ASTM Standards, Vol. 04 and Vol.05, American Society for Testing and Materials.
Bala, N., Napiah, M., and Kamaruddin, I., 2018. Effect of Nanosilica Particles on Polypropylene Polymer Modified Asphalt Mixture Performance. Case Studies in Construction Materials, 8(March), pp. 447–54. doi:10.1016/j.cscm.2018.03.011.
Bala, N., Napiah, M., and Kamaruddin, I., 2020. Nanosilica Composite Asphalt Mixtures Performance-Based Design and Optimisation Using Response Surface Methodology. International Journal of Pavement Engineering, 21(1), pp. 29–40. doi:10.1080/10298436.2018.1435881.
Behiry, A. E. A. E. M., 2012. Laboratory Evaluation of Resistance to Moisture Damage in Asphalt Mixtures. Ain Shams Engineering Journal, 4(3), pp. 351–63. doi:10.1016/j.asej.2012.10.009.
Cheng, J., Shen J., and Xiao, F., 2011. Moisture Susceptibility of Warm-Mix Asphalt Mixtures Containing Nanosized Hydrated Lime. Journal of materials in civil engineering, 23(11), pp. 1552–59. doi:10.1061/(ASCE)MT.1943-5533.
Crucho, J. M. L., das Neves, J. M. C., Capitão, S. D., and de Picado-Santos, L. G., 2018. Mechanical Performance of Asphalt Concrete Modified with Nanoparticles: Nanosilica, Zero-Valent Iron and Nanoclay. Construction & Building Materials, 181, pp. 309–18.
doi:10.1016/j.conbuildmat.2018.06.052.
Enieb, M., and Diab, A., 2017. Characteristics of Asphalt Binder and Mixture Containing Nanosilica. International Journal of Pavement Research and Technology, 10(2), pp. 148–57. doi: 10.1016/j.ijprt.2016.11.009.
Ganesh, K., and Prajwal, D. T., 2020. Studies on Fatigue Performance of Modified Dense Bituminous Macadam Mix Using Nano Silica as an Additive. International Journal of Pavement Research and Technology, 13(1), pp. 75–82. doi:10.1007/s42947-019-0087-z.
Ismael, M. Q., Fattah, M. Y., and Jasim, A. F., 2022. Permanent Deformation Characterization of Stone Matrix Asphalt Reinforced by Different Types of Fibers. Journal of Engineering, 28(2), pp. 99–116. doi:10.31026/j.eng.2022.02.07.
Khattak, M. J., A. Khattab, Zhang, P., Rizvi, H. R., and Pesacreta, T., 2013. Microstructure and Fracture Morphology of Carbon Nanofiber Modified Asphalt and Hot Mix Asphalt Mixtures. Materials and Structures/Materiaux et Constructions 46 (12): 2045–57. doi:10.1617/s11527-013-0035-3.
Li, R., Xiao, F., Amirkhanian, S., You, Z., and Huang, J., 2017. Developments of Nano Materials and Technologies on Asphalt Materials – A Review. Construction & Building Materials, 143, pp. 633–48. doi:10.1016/j.conbuildmat.2017.03.158.
Ismael, S. M., and Ismael, M. Q., 2019. Moisture Susceptibility of Asphalt Concrete Pavement Modified by Nanoclay Additive. Civil Engineering Journál, 5(12), pp. 2535-2553. doi:10.28991/cej-2019-03091431.
Mirabdolazimi, S. M., Kargari, A. H., and Pakenari, M. M., 2021. New Achievement in Moisture Sensitivity of Nano-Silica Modified Asphalt Mixture with a Combined Effect of Bitumen Type and Traffic Condition. International Journal of Pavement Research and Technology, 14(1), pp. 105–15. doi: 10.1007/s42947-020-0043-y.
Quipment, T., 2005. Evaluation of Hot Mix Asphalt Moisture Sensitivity Using the Nottingham Asphalt. Final Report, July.
Saleem, A. A., and Ismael, M. Q., 2020. Assessment Resistance Potential to Moisture Damage and Rutting for HMA Mixtures Reinforced by Steel Fibers. Civil Engineering Journal. 6 (12), pp. 1726-1738. doi: 10.28991/cej-2020-03091578.
SCRB/R9. 2003. General Specification for Roads and Bridges. Section R/9, Hot-Mix Asphalt Concrete Pavement, Revised Edition. State Corporation of Roads and Bridges, Ministry of Housing and Construction, Baghdad, Republic of Iraq.
Shafabakhsh, G. H., and Ani, O. J., 2015. Experimental Investigation of Effect of Nano TiO2/SiO2 Modified Bitumen on the Rutting and Fatigue Performance of Asphalt Mixtures Containing Steel Slag Aggregates. Construction & Building Materials, 98, pp. 692–702. doi: 10.1016/j.conbuildmat.2015.08.083.
Taherkhani, H., and Tajdini, M., 2019. Comparing the Effects of Nano-Silica and Hydrated Lime on the Properties of Asphalt Concrete. Construction and Building Materials, 218, pp. 308–315. doi: 10.1016/j.conbuildmat.2019.05.116.
Wang, H., You, Z., Mills-beale, J., and Hao, P., 2012. Laboratory Evaluation on High Temperature Viscosity and Low Temperature Stiffness of Asphalt Binder with High Percent Scrap Tire Rubber. Construction & Building Materials, 26 (1), pp. 583–90. doi:10.1016/j.conbuildmat.2011.06.061.
Yao, H., You, Z., Li, L., Lee, C. H., Wingard, D., Yap, Y.K, Shi, X., and Goh, S. W., 2013. Rheological Properties and Chemical Bonding of Asphalt Modified with Nanosilica. Journal of Materials in Civil Engineering, 25 (11), pp. 1619–30. doi: 10.1061/(asce)mt.1943-5533.0000690.