Using of Constructed Wetlands in The Treatment of Wastewater: A Review for Operation and Performance
Main Article Content
Abstract
Wastewater recycling for non-potable uses has gained significant attention to mitigate the high pressure on freshwater resources. This requires using a sustainable technique to treat natural municipal wastewater as an alternative to conventional methods, especially in arid and semi-arid rural areas. One of the promising techniques applied to satisfy the objective of wastewater reuse is the constructed wetlands (CWs) which have been used extensively in most countries worldwide through the last decades. The present study introduces a significant review of the definition, classification, and components of CWs, identifying the mechanisms controlling the removal process within such units. Vertical, horizontal, and hybrid CWs were used to treat different types of wastewater from individual households, waste disposal sites, oil refineries, agricultural production, and tannery effluent. The effects of several design and operational factors related to the type of plant, substrate, and flow direction are studied and surveyed in this work to be the starting point for researchers in future investigations
Article Details
Section
How to Cite
References
flow constructed wetland under different operational conditions. Journal of Advanced Research, 7(5), pp. 803–814. Doi:10.1016/j.jare.2015.12.002
Abdulmajeed, B. A., and Ibrahim, A. R., 2018. Mass Transfer Study for Bio-Synergy in Dairy Wastewater Treatment Plant. Journal of Engineering, 24(9), pp. 51–63. Doi:10.31026/j.eng.2018.09.04
Abou-elela, S. I., Golinielli, G., Abou-taleb, E. M., and Hellal, M. S., 2013. Municipal wastewater treatment in horizontal and vertical flows constructed wetlands Municipal wastewater treatment in horizontal and vertical flows constructed wetlands. Ecological Engineering, 61(March 2018), pp. 460–468. Doi:10.1016/j.ecoleng.2013.10.010
Al-Isawi, R., Sani, A., Almuktar, S., and M. Scholz., 2015. Vertical-flow constructed wetlands treating domestic wastewater contaminated by hydrocarbons. Water Science and Technology, 71(6), pp. 938–946. Doi: 10.2166/wst.2015.054.
Andreo-Martínez, P., García-Martínez, N., and Almela, L., 2016. Domestic wastewater depuration using a horizontal subsurface flow constructed wetland and theoretical surface optimization: A case study under dry mediterranean climate. Water (Switzerland), 8(10), P. 434. Doi:10.3390/w8100434
A'vila, C., Salas, J. J., Martín, I., Aragón, C., and García, J., 2013. Integrated treatment of combined sewer wastewater and stormwater in a hybrid constructed wetland system in southern Spain and its further reuse. Ecological Engineeringi, 50(Jan.), pp. 13-20. Doi:10.1016/j.ecoleng.2012.08.009
Babatunde, A. O., Zhao, Y. Q., and Zhao, X. H., 2010. Alum sludge-based constructed wetland system for enhanced removal of P and OM from wastewater: Concept, design and performance analysis. Bioresource Technology, 101(16), pp. 6576–6579. Doi:10.1016/j.biortech.2010.03.066
Bilgin, M., Şimşek, I., and Tulun, Ş., 2014. Treatment of domestic wastewater using a lab-scale activated sludge/vertical flow subsurface constructed wetlands by using Cyperus alternifolius. Ecological Engineering, 70, pp. 362–365. Doi:10.1016/j.ecoleng.2014.06.032
Brix, H., 1997. Do macrophytes play a role in constructed treatment wetlands? Water Science and Technology, 35(5), pp. 11–17. Doi:10.1016/S0273-1223(97)00047-4
Brix, H., and Arias, C. A., 2005. The use of vertical flow constructed wetlands for on-site treatment of domestic wastewater: New Danish guidelines. Ecological Engineering, 25(5), pp. 491–500. Doi:10.1016/j.ecoleng.2005.07.009
Bulc, T.G., Ojstrsek, A., and Vrhovšek, D., 2006. The use of constructed wetland for textile wastewater treatment. 10th Internat. Conf. Wetland Systems for Water Pollution Control, pp. 1667–1675.
Bulc, Tjaˇsa G., and Ojstrˇsek, A., 2008. The use of constructed wetland for dye-rich textile wastewater treatment. Journal of Hazardous Materials, 155, pp. 76–82.
Büyükkamaci, N., and Filibeli, A., 2002. Determination of kinetic constants of an anaerobic hybrid reactor. Process Biochemistry, 38(1), pp. 73–79. Doi:10.1016/S0032-9592(02)00047-X
Calheiros, C. S. C., Rangel, A. O. S. S., and Castro, P. M. L., 2007. Constructed wetland systems vegetated with different plants applied to the treatment of tannery wastewater. Water Research, 41(8), pp. 1790–1798. Doi:10.1016/j.watres.2007.01.012
Chen, Y., Wen, Y., Cheng, J., Xue, C. H., Yang, D., and Zhou, Q., 2011. Effects of dissolved oxygen on extracellular enzymes activities and transformation of carbon sources from plant biomass: Implications for denitrification in constructed wetlands. Bioresource Technology, 102(3), pp. 2433–2440. Doi:10.1016/j.biortech.2010.10.122
Cooper, P., 1999. A review of the design and performance of vertical-flow and hybrid reed bed treatment systems. Water Science and Technology, 40(3), pp. 1–9. Doi:10.2166/wst.1999.0125
Davies, L.C., Pedro, I. S., Novais, J. M., and Martins-Dias, S., 2006. Aerobic degradation of acid orange 7 in a vertical-flow constructed wetland. Water Research, 40(10), pp. 2055–2063. Doi:10.1016/j.watres.2006.03.010
Davies, L Caetano, Cabrita, G. J. M., Ferreira, R. A., Carias, C. C., Novais, J. M., and Martins-Dias, S., 2009. Integrated study of the role of Phragmites australis in azo-dye treatment in a constructed wetland: from pilot to molecular scale. Ecological Engineering, 35(6), pp. 961–970. Doi:10.1016/j.ecoleng.2008.08.001
Dong, Y., 2013. Application of integrated constructed wetlands for contaminant treatment and diffusion. Ph.D thesis, school of engineering at the University of Edinburgh.
Fadhil, N. M., and Al-Baldawi, I. A. W., 2019. Mechanisms of Plant-Correlation Phytoremediation of Al-Daura Iraqi Refinery Wastewater Using Wetland Plant from Tigris River. Journal of Engineering, 25(10), pp. 20–32. Doi:10.31026/j.eng.2019.10.02
Faekah, I. N., Fatihah, S., and Mohamed, Z. S., 2020. Kinetic evaluation of a partially packed upflow anaerobic fixed film reactor treating lowstrength synthetic rubber wastewater. Heliyon, 6(3), P. e03594. Doi:10.1016/j.heliyon.2020.e03594
Faisal, A. A. H., and Badah, B. J., 2021. Removal of Congo red dye from simulated wastewater using vertical subsurface flow constructed wetland packed with sewage sludge bed. Desalination and Water Treatment, 223, pp. 414–424. Doi:10.5004/dwt.2021.27139
Fountoulakis, M. S., Terzakis, S., Chatzinotas, A., Brix, H., Kalogerakis, N., and Manios, T., 2009. Pilot-scale comparison of constructed wetlands operated under high hydraulic loading rates and attached biofilm reactors for domestic wastewater treatment. Science of the Total Environment, 407(8), pp. 2996–3003. Doi:10.1016/j.scitotenv.2009.01.005
Gajewska, M., Jówiakowski, K., and Skrzypiec, K., 2017. Effectiveness of pollutants removal in hybrid constructed wetlands - Different configurations case study. E3S Web of Conferences, 17, pp. 1–8. Doi:10.1051/e3sconf/20171700023
Gikas, P., Ranieri, E., and Tchobanoglous, G., 2013. Removal of iron, chromium and lead from waste water by horizontal subsurface flow constructed wetlands. Journal of Chemical Technology and Biotechnology, 88(10), pp. 1906–1912. Doi:10.1002/jctb.4048
Gupta, P., Ann, T. W., and Lee, S. M., 2016. Use of biochar to enhance constructed wetland performance in wastewater reclamation. Environmental Engineering Research, 21(1), pp. 36–44. Doi.org/10.4491/eer.2015.067
Haberl, R., 1999. Constructed wetlands: A chance to solve wastewater problems in developing countries. Water Science and Technology, 40(3), pp. 11–17. Doi:10.1016/S0273-1223(99)00415-1
Hu, Y., Zhao, Y., and Rymszewicz, A., 2014. Robust biological nitrogen removal by creating multiple tides in a single bed tidal flow constructed wetland. Science of the Total Environment, 470-471, pp. 1197-1204. Doi:10.1016/j.scitotenv.2013.10.100
Huang, L., Liu, F., Yang, Y., Kong, X., and Zhang, Y., 2015. Ammonium-nitrogen contaminated groundwater remediation by a sequential three-zone permeable reactive barrier with oxygen-releasing compound (ORC)/clinoptilolite/spongy iron: column studies. Environmental Science and Pollution Research, 22(5), pp. 3705–3714. Doi:10.1007/s11356-014-3602-4
Hussein, A., and Scholz, M., 2017. Dye wastewater treatment by vertical-flow constructed wetlands. Ecological Engineering, 101, pp. 28–38. Doi:10.1016/j.ecoleng.2017.01.016
Imron, M. F., Kurniawan, S. B., Soegianto, A., and Wahyudianto, F. E., 2019. Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon, 5(8), P. e02206. Doi:10.1016/j.heliyon.2019.e02206
Jafarzadeh, M. T., Mehrdad, N., and Hashemian, S. J., 2009. Kinetic constants of anaerobic hybrid reactor treating petrochemical waste. Asian J. Chem., 21(3), pp. 1672–1684.
Kabra, A. N., Khandare, R. V., and Govindwar, S. P., 2013. Development of a bioreactor for remediation of textile effluent and dye mixture: A plant–bacterial synergistic strategy. Water Research, 47(3), pp. 1035–1048. Doi:10.1016/j.watres.2012.11.007
Kadlec, R. H., and Wallace, S. D., 2009. Treatment Wetlands. 2nd Edition, CRC press, Taylor & Francis Group, LLC.
Kadlec, R. H., 2009. Comparison of free water and horizontal subsurface treatment wetlands. Ecological Engineering, 35(2), pp. 159–174. Doi:10.1016/j.ecoleng.2008.04.008
Kadlec, R.H., 2000. The inadequacy of first-order treatment kinetic models. Ecological Engineering, 15, pp. 105–119. Doi:10.1016/S0925-8574(99)00039-7
Kadlec, R.H., and Wallace, S., 2008. Treatment Wetlands. In 2nd edition CRC Press. CRC Press. Doi:10.1201/9781420012514
Keskinkan, O., and Göksu, M. L., 2007. Assessment of the dye removal capability of submersed aquatic plants in a laboratory-scale wetland system using anova. Brazilian Journal of Chemical Engineering, 24(2), pp. 193–202. Doi:10.1590/S0104-66322007000200004
Kotti, I. P., Gikas, G. D., and Tsihrintzis, V. A., 2010. Effect of operational and design parameters on removal efficiency of pilot-scale FWS constructed wetlands and comparison with HSF systems. Ecological Engineering, 36(7), pp. 862–875. Doi:10.1016/j.ecoleng.2010.03.002
Kumari, M., and Tripathi, B. D., 2014. Effect of aeration and mixed culture of Eichhornia crassipes and Salvinia natans on removal of wastewater pollutants. Ecological Engineering, 62(3), pp. 48–53. Doi:10.1016/j.ecoleng.2013.10.007
Li, J., 2010. Application of Decentralized WastewaterTreatment in Small towns and Villages of China.
Liang, M.-Q., Zhang, C.-F., Peng, C.-L., Lai, Z.-L., Chen, D.-F., and Chen, Z.-H., 2011. Plant growth, community structure, and nutrient removal in monoculture and mixed constructed wetlands. Ecological Engineering, 37(2), pp. 309–316.
Mackintosh, T. J., Davis, J. A., and Thompson, R. M., 2017. The effects of urbanization on trophic relationships in constructed wetlands. Freshwater Science, 36(1), pp. 138–150. Doi.org/10.1086/690674
Mahmood, Q., Pervez, A., Zeb, B. S., Zaffar, H., Yaqoob, H., Waseem, M., Zahidullah, and Afsheen, S., 2018. Corrigendum to “Natural Treatment Systems as Sustainable Ecotechnologies for the Developing Countries". BioMed Research International, 2018, March 20, pp. 1–2. Doi:10.1155/2018/4761769
Meyer, D., Molle, P., Esser, D., Troesch, S., Masi, F., and Dittmer, U., 2013. Constructed wetlands for combined sewer overflow treatment-comparison of German, French and Italian approaches. Water (Switzerland), 5(1), pp. 1–12. Doi:10.3390/w5010001
Mustafa, A., 2013. Constructed Wetland for Wastewater Treatment and Reuse: A Case Study of Developing Country. International Journal of Environmental Science and Development, 4(1), pp. 20-24. Doi:10.7763/IJESD.2013.V4.296
Ni, S.Q., Sung, S., Yue, Q.Y., and Gao, B.Y., 2012. Substrate removal evaluation of granular anammox process in a pilot-scale upflow anaerobic sludge blanket reactor. Ecological Engineering, 38(1), pp. 30–36. Doi:10.1016/j.ecoleng.2011.10.013
Nilratnisakorn, S., Thiravetyan, P., and Nakbanpote, W., 2009. A constructed wetland model for synthetic reactive dye wastewater treatment by narrow-leaved cattails (Typha angustifolia Linn.). Water Science and Technology, 60(6), pp. 1565–1574. Doi:10.2166/wst.2009.500
Odegaard, H., Liao, Z., and Hansen, A. T., 2003. Coarse media filtration - An alternative to settling in wastewater treatment. Water Science and Technology, 47(12), pp. 81-88.
Ong, S.-A., Uchiyama, K., Inadama, D., Ishida, Y., and Yamagiwa, K., 2010. Performance evaluation of laboratory scale up-flow constructed wetlands with different designs and emergent plants. Bioresource Technology, 101(19), pp. 7239–7244. Doi:10.1016/j.biortech.2010.04.032
Pálfy, T. G., and Langergraber, G., 2014. The verification of the constructed wetland model no. 1 implementation in HYDRUS using column experiment data. Ecological Engineering, 68, pp. 105-115. Doi:10.1016/j.ecoleng.2014.03.016
Rahmadyanti, E., and Audina, O., 2020. The performance of hybrid constructed wetland system for treating the batik wastewater. Journal of Ecological Engineering, 21(3), pp. 94–103. Doi:10.12911/22998993/118292
Rehman, F., Pervez, A., Mahmood, Q., and Nawab, B., 2017. Wastewater remediation by optimum dissolve oxygen enhanced by macrophytes in constructed wetlands. Ecological Engineering, 102, pp. 112-126. Doi:10.1016/j.ecoleng.2017.01.030
Rousseau, D. P., Vanrolleghem, P. A., and Pauw, N. De., 2004. Model based design of horizontal subsurface flow constructed treatment wetlands: A review. Water Research, 38(6), pp. 1484–1493.
Rustige, H., Tomac, I., and Höner, G., 2003. Investigations on phosphorus retention in subsurface flow constructed wetlands. Water Science and Technology, 48(5), pp. 67–74. Doi:10.2166/wst.2003.0283
Saeed, T., and Sun, G., 2012. A review on nitrogen and organics removal mechanisms in subsurface flow constructed wetlands: Dependency on environmental parameters, operating conditions and supporting media. Journal of Environmental Management, 112, pp. 429–448. Doi:10.1016/j.jenvman.2012.08.011
Samsó, R., and Garcia, J., 2013. BIO_PORE, a mathematical model to simulate biofilm growth and water quality improvement in porous media: Application and calibration for constructed wetlands. Ecological Engineering, 54, pp. 116–127. Doi:10.1016/j.ecoleng.2013.01.021
Sandhya, S., and Swaminathan, K., 2006. Kinetic analysis of treatment of textile wastewater in hybridcolumn upflow anaerobic fixed bed reactor. Chem. Eng. J., 122, pp. 87–92.
Sani, A., 2015. Treatment Performance Assessments of Different Wetland Mesocosms. June.
Sindilariu, P. D., Brinker, A., and Reiter, R., 2009. Factors influencing the efficiency of constructed wetlands used for the treatment of intensive trout farm effluent. Ecological Engineering, 35(5), pp. 711–722. Doi:10.1016/j.ecoleng.2008.11.007
Song, H.-L., Nakano, K., Taniguchi, T., Nomura, M., and Nishimura, O., 2009. Estrogen removal from treated municipal effluent in small-scale constructed wetland with different depth. Bioresource Technology, 100(12), pp. 2945–2951. Doi:10.1016/j.biortech.2009.01.045
Stanković, D., 2017. Constructed wetlands for wastewater treatment. Građevinar, 69, pp. 639–652.
Stefanakis, A., Akratos, C. S., and Tsihrintzis, V. A., 2014. Vertical flow constructed wetlands: eco-engineering systems for wastewater and sludge treatment. Newnes.
Stefanakis, A. I., 2017. Constructed Wetlands (Issue October, pp. 281–303. Doi:10.4018/978-1-4666-9559-7.ch012
Stefanakis, A. I., 2018. Introduction to Constructed Wetland Technology. Constructed Wetlands for Industrial Wastewater Treatment, July 2018, pp. 1–21. Doi:10.1002/9781119268376.ch0
Stefanakis, A. I., and Tsihrintzis, V. A., 2012. Heavy metal fate in pilot-scale sludge drying reed beds under various design and operation conditions. Journal of Hazardous Materials, 213–214, pp. 393–405. Doi:10.1016/j.jhazmat.2012.02.016
Uggetti, E., Ferrer, I., Llorens, E., and García, J., 2010. Sludge treatment wetlands: A review on the state of the art. In Bioresource Technology. Doi:10.1016/j.biortech.2009.11.102
Von Felde, K., and Kunst, S., 1997. N- and COD-removal in vertical-flowsystems. Water Science and Technology, 35(5), pp. 79-85. Doi:10.1016/S0273-1223(97)00055-3
Vymazal, J., 2005. Horizontal sub-surface flow and hybrid constructed wetlands systems for wastewater treatment. Ecological Engineering, 25(5), pp. 478–490. Doi:10.1016/j.ecoleng.2005.07.010
Vymazal, J., 2007. Removal of nutrients in various types of constructed wetlands. Science of the Total Environment, 380(1–3), pp. 48–65. Doi:10.1016/j.scitotenv.2006.09.014
Vymazal, J., 2011. Constructed wetlands for wastewater treatment: five decades of experience. Environmental Science and Technology, 45(1), pp. 61–69.
Vymazal, J., 2013. Emergent plants used in free water surface constructed wetlands: A review. Ecological Engineering, 61, pp. 582–592. Doi:10.1016/j.ecoleng.2013.06.023
Vymazal, J., and Kröpfelová, L., 2009. Removal of organics in constructed wetlands with horizontal sub-surface flow: a review of the field experience. Science of the Total Environment, 407(13), pp. 3911–3922.
Wang, Q., Hu, Y., Xie, H., and Yang, Z., 2018. Constructed wetlands: A review on the role of radial oxygen loss in the rhizosphere by Macrophytes. Water, 10(6), P. 678. Doi:10.3390/w10060678
Wu, S., Kuschk, P., Brix, H., Vymazal, J., and Dong, R., 2014. Development of constructed wetlands in performance intensifications for wastewater treatment: A nitrogen and organic matter targeted review. Water Research, 57, pp. 40–55. Doi:10.1016/j.watres.2014.03.020
Wu, S., Lyu, T., Zhao, Y., Vymazal, J., Arias, C. A., and Brix, H., 2018. Rethinking Intensification of Constructed Wetlands as a Green Eco-Technology for Wastewater Treatment. Environmental Science and Technology, 52(4), pp. 1693–1694. Doi:10.1021/acs.est.8b00010
Wynn, M. T., and Liehr, S. K., 2001. Development of a constructed subsurface flow wetland simulation model. Ecological Engineering, 16, pp. 519–536.
Xinshan, S., Qin, L., and Denghua, Y., 2010. Nutrient removal by hybrid subsurface flow constructed wetlands for high concentration ammonia nitrogen wastewater. Procedia Environmental Sciences, 2(5), pp. 1461–1468. Doi:10.1016/j.proenv.2010.10.159
Yalcuk, A., and Dogdu, G., 2014. Treatment of azo dye Acid Yellow 2G by using labscale vertical-flow intermittent feeding constructed wetlands. Journal of Selcuk University Natural and Applied Science, pp. 355–368.
Zhang, Y., 2012. Design of a Constructed Wetland for Wastewater Treatment and Reuse in Mount Pleasant. MSc. T