On the Laser Micro Cutting: Experimentation and Mathematical Modeling based on RSM-CCD
Main Article Content
Abstract
The laser micro-cutting process is the most widely commonly applied machining process which can be applied to practically all metallic and non-metallic materials. While this had challenges in cutting quality criteria such as geometrical precision, surface quality and numerous others. This article investigates the laser micro-cutting of PEEK composite material using nano-fiber laser, due to their significant importunity and efficiency of laser in various manufacturing processes. Design of experiential tool based on Response Surface Methodology (RSM)-Central Composite Design (CCD) used to generate the statistical model. This method was employed to analysis the influence of parameters including laser speed, laser power, laser frequency and number of passes on the cutting characteristics -and geometrical. Cutting-geometry requirements are significant quality features since they are one of the metrics for the geometrical precision of micro-cutting proses it was concluded that higher laser power, slower speed, and more pass number result in a low kerf taper, these parameters have a significant impact on the other cutting characteristics, and geometrical. Whereas the frequency has the lowers impact on the cutting geometrical. Finally, the experiments show Maximum depth was 2000, width minimum top kerf width was 305.56 µm and the minimum angle of 2.8906.
Article received: 02/01/2023
Article accepted: 06/02/2023
Article published: 01/04/2023
Article Details
How to Cite
Publication Dates
References
Bachy, B., and Franke, J., 2015. Experimental investigation and optimization for the effective parameters in the laser direct structuring process. Journal of Laser Micro Nanoengineering, 10(2), P.202. doi:10.2961/jlmn.2015.02.0018.
Bachy, B., 2017. Experimental investigation, Modeling, Simulation and Optimization of Molded Interconnect Devices (MID) Based on Laser Direct Structuring (LDS). Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU).
Baş, D., and Boyacı, I.H., 2007. Modeling and optimization I: Usability of response surface methodology. Journal of food engineering, 78(3), pp. 836-845. doi:10.1016/j.jfoodeng.2005.11.024
Dixit, S. R., Das, S. R., and Dhupal, D., 2019. Parametric optimization of Nd:YAG laser micro grooving on aluminum oxide using integrated RSM-ANN-GA approach. J. Ind. Eng. Int, 5(2), pp. 333–349.
doi:10.1007/s40092-018-0295-1.
Genna, S., Menna, E., Rubino, G., and Tagliaferri, V., 2020. Experimental investigation of industrial laser cutting: The effect of the material selection and the process parameters on the kerf quality. Applied Sciences, 10(14), P.4956. doi:10.3390/app10144956.
Girdu, C.C., Gheorghe, C., Radulescu, C., and Cirtina, D., 2021. Influence of process parameters on cutting width in CO2 laser processing of hardox 400 steel. Applied Sciences, 11(13), P.5998.
doi:10.3390/app11135998.
Madić, M., Petrović, G., Petković, D., Antucheviciene, J., and Marinković, D., 2022. Application of a robust decision-making rule for comprehensive assessment of laser cutting conditions and performance. Machines, 10(2), P. 153. doi:10.3390/machines10020153
Mishra, D.R., Dutt, G.G., Prakash, D., Bajaj, A., Sharma, A., Bisht, R., and Gupta, S., 2020. Optimization of kerf deviations in pulsed Nd: YAG laser cutting of hybrid composite laminate using GRA. FME Transactions, 48(1), pp. 109-116. doi:10.5937/fmet2001109M.
Mushtaq, R.T., Wang, Y., Rehman, M., Khan, A.M., and Mia, M., 2020. State-of-the-art and trends in CO2 laser cutting of polymeric materials—a review. Materials, 13(17), P.3839. doi:10.3390/ma13173839
Ninikas, K., Kechagias, J., and Salonitis, K., 2021. The impact of process parameters on surface roughness and dimensional accuracy during CO2 laser cutting of PMMA thin sheets. Journal of Manufacturing and Materials Processing, 5(3), P.74. doi:10.3390/jmmp5030074.
Patel, A., and Bhavsar, S.N., 2021. Experimental investigation to optimize laser cutting process parameters for difficult to cut die alloy steel using response surface methodology. Materials Today: Proceedings, 43, pp. 28-35. doi:10.1016/j.matpr.2020.11.201
Pramanik, D., Kuar, A.S., Sarkar, S., and Mitra, S., 2021. Optimisation of edge quality on stainless steel 316L using low power fibre laser beam machining. Advances in Materials and Processing Technologies, 7(1), pp. 42-53. doi:10.1080/2374068X.2020.1745734
Rodrigues, G. C., Vorkov, V., and Duflou, J. R., 2018. Optimal laser beam configurations for laser cutting of metal sheets. Procedia CIRP, 74, pp. 714–718. doi: 10.1016/j.procir.2018.08.026.
Sen. A, Doloi. B., and Bhattacharyya. B, 2016. Fiber laser micro channeling of polymethyl methacrylate (PMMA). Lasers Eng., 35(14), pp. 123–138
Son, S., and Lee, D., 2020. The effect of laser parameters on cutting metallic materials. Materials, 13(20), p.4596. doi:10.3390/ma13204596.
Spena, P.R., 2017. CO2 laser cutting of hot stamping boron steel sheets. Metals, 7(11), p.456. doi:10.3390/met7110456.
Tamilarasan, A., and Rajamani, D., 2017. Multi-response optimization of Nd: YAG laser cutting parameters of Ti-6Al-4V superalloy sheet. Journal of Mechanical Science and Technology, 31, pp.813-821. doi:10.1007/s12206-017-0133-1.
Teixidor Ezpeleta, D., Ciurana, Q.D., and Rodríguez González, C.Á., 2014. Dross formation and process parameters analysis of fibre laser cutting of stainless steel thin sheets. International Journal of Advanced Manufacturing Technology, 2014, vol. 71, p. 1611-1621. doi:10.1007/s00170-013-5599-0
Varsi, A.M., and Shaikh, A.H., 2019. Experimental and statistical study on kerf taper angle during CO2 laser cutting of thermoplastic material. Journal of Laser Applications, 31(3), p.032010. doi:10.2351/1.5087846
Wang, X., Huang, Y., Wang, X., Xu, B., Feng, J., and Shen, B., 2020. Experimental investigation and optimization of laser induced plasma micromachining using flowing water. Optics & Laser Technology, 126, P.106067. doi:10.1016/j.optlastec.2020.106067