Revolutionizing Depth Sensing: A Review Study of Apple LiDAR Sensor for as-built Scanning Applications

Main Article Content

Sahar Fadhil Abbas
Fanar Mansour Abed

Abstract

Incorporating the LiDAR sensor in the most recent Apple devices represents a substantial development in 3D mapping technology. Meanwhile, Apple's Lidar is still a new sensor. Therefore, this article reviews the potential uses of the Apple Lidar sensor in various fields, including engineering and construction, focusing on indoor and outdoor as-built 3D mapping and cultural heritage conservation. The affordable cost and shorter observation times compared to traditional surveying and other remote sensing techniques make the Apple Lidar an attractive choice among scholars and professionals. This article highlights the need for continued research on the Apple LiDAR sensor technology while discussing its specifications and limitations. A comprehensive review found that the Apple LiDAR sensor has shown promise in capturing 3D point clouds of small to medium-sized objects with exceptional detail. This technology offers a cost-effective and accessible option to scan areas faster and analyze data more quickly and automatically for 3D mapping and modelling in indoor and outdoor environments, particularly in areas with restricted access when using other traditional techniques. It also opens the door for more sophisticated applications in future studies, including cultural heritage conservation, archaeological investigations and feature detection, building health monitoring and many more.

Article Details

How to Cite
“Revolutionizing Depth Sensing: A Review Study of Apple LiDAR Sensor for as-built Scanning Applications” (2024) Journal of Engineering, 30(04), pp. 175–199. doi:10.31026/j.eng.2024.04.11.
Section
Articles

How to Cite

“Revolutionizing Depth Sensing: A Review Study of Apple LiDAR Sensor for as-built Scanning Applications” (2024) Journal of Engineering, 30(04), pp. 175–199. doi:10.31026/j.eng.2024.04.11.

Publication Dates

Received

2023-03-24

Accepted

2023-06-18

Published Online First

2024-04-01

References

Abbas, S.F., and Abed, F.M., 2022. Evaluating the accuracy of iPhone Lidar Sensor for building façades conservation. In international conference on Mediterranean Geosciences Union, November (pp. 141-144). Cham: Springer Nature Switzerland.

Alkarawi, S.N., and Jaber, F.K., 2023. Integration building information modeling and lean construction technologies in the Iraqi construction sector: Benefits and constraints. Journal of Engineering, 29(6), pp. 140-158. Doi:10.31026/j.eng.2023.06.11.

Azim, A., 2013. 3D perception of outdoor and dynamic environment using laser scanner (Doctoral dissertation, Universite de Grenoble I-Joseph Fourier).

Béchadergue, B., Chassagne, L., and Guan, H., 2016. Visible light phase-shift rangefinder for platooning applications. 2016 IEEE 19th International Conference on Intelligent Transportation Systems (ITSC). IEEE. pp. 2462–2468. Doi:10.1109/ITSC.2016.7795952

Behroozpour, B., Sandborn, P.A.M., Wu, M.C., and Boser, B.E., 2017. Lidar system architectures and circuits. IEEE Communications Magazine, 55(10), pp. 135–142. Doi:10.1109/MCOM.2017.1700030.

BenMoussa, A., Giordanengo, B., Gissot, S., Meynants, G., Wang, X., Wolfs, B., Bogaerts, J., Schühle, U., Berger, G., and Gottwald, A.A., 2016, January. 64× 64-pixel digital silicon photomultiplier direct ToF sensor with 100Mphotons/s/pixel background rejection and imaging/altimeter mode with 0.14% precision up to 6km for spacecraft navigation and landing. Proceedings of the 2016 IEEE International Solid-State Circuits Conference (ISSCC) (pp. 118-120).

Beraldin, J.A., Blais, F., and Lohr, U., 2010. Laser scanning technology. Airborne and terrestrial laser scanning, pp. 1–42.

Bookhahn, M., Brechtel, A., Lorenz, T., Voit, F., Neumann, F., and Berlin, W., 2021. SparePart Assist-a mobile app to identify spare parts based on 3D sensor data. An interim balance. GFaI eV. Berlin: 2021, pp. 29-38.

Buchner, A., Haase, J., Ruskowski, J., and Brockherde, W., 2020, January. Laser event distribution and timing circuit design constraints in direct TOF LiDAR applications. Quantum Sensing and Nano Electronics and Photonics XVII (Vol. 11288, pp. 345-350). SPIE. Doi:10.1117/12.2550631.

Budisusanto, Y., Ubaidillah, M.R., Cahyadi, M.N., Imani, D.W., and Farid, I.W., 2021. Low-cost Lidar Tls-100 comparison with Lidar Ipad Pro for 3d mapping. Journal of Marine-Earth Science and Technology, 2(3), pp. 88-95. Doi:10.12962/j27745449.v2i3.430.

Chase, P., Clarke, K., Hawkes, A., Jabari, S., and Jakus, J., 2022. Apple iPhone 13 Pro LiDAR accuracy assessment for engineering applications. Conference of Transforming Construction with Reality Capture Technologies: The Digital Reality of Tomorrow, New Brunswick Canada. Doi:10.57922/tcrc.645

Cohen-Smith, H., Bickler, S.H., Jones, B., Larsen, B., and Apfel, A., 2022. New Tech for Old Jobs: Handheld LiDAR for Feature Recording. Archaeology, 14.

Dewez, T.J., Yart, S., Thuon, Y., Pannet, P., and Plat, E., 2017. Towards cavity‐collapse hazard maps with Zeb‐Revo handheld laser scanner point clouds. The Photogrammetric Record, 32(160), pp. 354-376. Doi:10.1111/phor.12223 .

Di Filippo, A., Sánchez-Aparicio, L.J., Barba, S., Martín-Jiménez, J.A., Mora, R., and González Aguilera, D., 2018. Use of a wearable mobile laser system in seamless indoor 3D mapping of a complex historical site. Remote Sensing, 10(12), p.1897.Doi:10.3390/rs10121897.

Di Stefano, F., Chiappini, S., Gorreja, A., Balestra, M., and Pierdicca, R., 2021a. Mobile 3D scan LiDAR: A literature review. Geomatics, Natural Hazards and Risk, 12(1), pp. 2387-2429. Doi:10.1080/19475705.2021.1964617 .

Di Stefano, F., Torresani, A., Farella, E.M., Pierdicca, R., Menna, F., and Remondino, F., 2021. 3D surveying of underground built heritage: Opportunities and challenges of mobile technologies. Sustainability, 13(23), p.13289. Doi:10.3390/su132313289 .

Díaz Vilariño, L., Tran, H., Frías Nores, E., Balado Frías, J., and Khoshelham, K., 2022. 3D mapping of indoor and outdoor environments using Apple smart devices. ISPRS-International Archives of the Photogrammetry Remote Sensing and Spatial Information Sciences. XLIII-B4-2022, pp. 303–308. Doi:10.5194/isprs-archives-xliii-b4-2022-303-2022.

Dummer, M., Johnson, K., Rothwell, S., Tatah, K., and Hibbs-Brenner, M., 2021, March. The role of VCSELs in 3D sensing and LiDAR. Optical Interconnects XXI (Vol. 11692, pp. 42-55). SPIE. Doi:10.1117/12.2577885.

Ebrahim, M.A.B., 2015. 3D laser scanners’ techniques overview. International Journal of Scientific Research, 4(10), pp. 323-331.

Erzaij, K.R., and Obaid, A.A., 2017. Application of building information modeling (3D and 4D) in construction sector in Iraq. Journal of Engineering, 23(10), pp. 30-43. Doi:10.31026/j.eng.2017.10.03

Franklin, C., 2020. Apple unveils new ipad pro with breakthrough lidar scanner and brings trackpad support to ipados. <https://www.apple.com/newsroom/2020/03/apple-unveils-new-ipad-pro-with-lidar-scanner-and-trackpad-support-in-ipados/>

Gollob, C., Ritter, T., and Nothdurft, A., 2020. Forest inventory with long range and high-speed personal laser scanning (PLS) and simultaneous localization and mapping (SLAM) technology. Remote Sensing, 12(9), P.1509. Doi:10.3390/rs12091509.

Gollob, C., Ritter, T., Kraßnitzer, R., Tockner, A., and Nothdurft, A., 2021. Measurement of forest inventory parameters with Apple iPad pro and integrated LiDAR technology. Remote Sensing, 13(16), P. 3129. Doi:10.3390/rs13163129.

Grešla, O., and Jašek, P., 2023. Measuring road structures using a mobile mapping system. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 48, pp. 43-48. Doi:10.5194/isprs-archives-XLVIII-5-W2-2023-43-2023.

Guan, H., Li, J., Cao, S., and Yu, Y., 2016. Use of mobile LiDAR in road information inventory: A review. International Journal of Image and Data Fusion, 7(3), pp. 219-242. Doi:10.1080/19479832.2016.1188860.

Hakanen, T., Kemppi, P., and Tikka, P., 2023. Mobile 3D LiDAR-based object and change detection in production and operations management. ICAS 2023, P.10.

Hyyppä, E., Kukko, A., Kaijaluoto, R., White, J.C., Wulder, M.A., Pyörälä, J., Liang, X., Yu, X., Wang, Y., Kaartinen, H., and Virtanen, J.P., 2020. Accurate derivation of stem curve and volume using backpack mobile laser scanning. ISPRS Journal of Photogrammetry and Remote Sensing, 161, pp. 246-262. Doi:10.1016/j.isprsjprs.2020.01.018.

Ibrahim, O.A., 2018. Evaluation The performance geodetic of the receivers using static positioning technique. Journal of Engineering, 24(10), pp. 98-105. Doi:10.31026/j.eng.2018.10.08.

Jaboyedoff, M., and Derron, M.H., 2020. Landslide analysis using laser scanners. Developments in earth surface processes, 23, pp. 207-230. Doi:10.1016/B978-0-444-64177-9.00007-2.

Jakovljević, G., Govedarica, M., and Taboada, F.A., 2022, June. Iphone 13 Pro Vs professional Tls for 3D indoor mapping. International conference on Contemporary Theory and Practice in Construction (No. 15, pp. 274-282). Doi:10.7251/STP2215274J.

King, F., Kelly, R., and Fletcher, C.G., 2022. Evaluation of lidar-derived snow depth estimates from the iPhone 12 pro. IEEE Geoscience and Remote Sensing Letters, 19, pp. 1-5. Doi:10.1109/LGRS.2022.3166665.

Koerner, L.J., 2021. Models of direct time-of-flight sensor precision that enable optimal design and dynamic configuration. IEEE Transactions on Instrumentation and Measurement, 70, pp. 1-9. Doi:10.1109/TIM.2021.3073684.

Kottner, S., Thali, M.J., and Gascho, D., 2023. Using the iPhone's LiDAR technology to capture 3D forensic data at crime and crash scenes. Forensic Imaging, 32, p.200535. Doi:10.1016/j.fri.2023.200535.

Kukko, A., Kaartinen, H., Hyyppä, J., and Chen, Y., 2012. Multiplatform mobile laser scanning: Usability and performance. Sensors, 12(9), pp. 11712-11733. Doi:10.3390/s120911712

Lerma, J.L., Van Genechten, B., Heine, E., and Quintero, M.S., 2008. 3D risk mapping theory and practice on terrestrial laser scanning, editor Universidad Politecnica De Valencia, pp. 261.

Li, Y., and Ibanez-Guzman, J., 2020. Lidar for autonomous driving: The principles, challenges, and trends for automotive lidar and perception systems. IEEE Signal Processing Magazine, 37(4), pp. 50-61. Doi:10.1109/MSP.2020.2973615.

Lohani, B., and Yadav, M., 2018. Mobile Lidar systems today and tomorrow. Gim International-The Worldwide Magazine For Geomatics, 32(4), pp. 18-20.

Lopac, N., Jurdana, I., Brnelić, A., and Krljan, T., 2022. Application of laser systems for detection and ranging in the modern road transportation and maritime sector. Sensors, 22(16), p.5946. Doi:10.3390/s22165946.

Luetzenburg, G., Kroon, A., and Bjørk, A.A., 2021. Evaluation of the Apple iPhone 12 Pro LiDAR for an application in geosciences. Scientific reports, 11(1), pp. 1-9. Doi:10.1038/s41598-021-01763-9.

Mikalai, Z., Andrey, D., Hawas, H.S., Tеtiana, Н., and Oleksandr, S., 2022, January. Human body measurement with the iPhone 12 Pro LiDAR scanner. AIP Conference Proceedings (Vol. 2430, No. 1). AIP Publishing. Doi:10.1063/5.0078310.

Mohammed, R.A.J., Abed, F.M., and George, L.E., 2015. Improved automatic registration adjustment of multi-source remote sensing datasets. Journal of Engineering, 21(4), pp. 61-81. Doi:10.31026/j.eng.2015.04.04

Murtiyoso, A., Grussenmeyer, P., and Suwardhi, D., 2019. Technical considerations in Low-Cost heritage documentation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, pp. 225-232. Doi:10.5194/isprs-archives-XLII-2-W17-225-2019.

Murtiyoso, A., Grussenmeyer, P., Landes, T., and Macher, H., 2021. First assessments into the use of commercial-grade solid state lidar for low cost heritage documentation. In XXIV ISPRS Congress (2021 edition), 5-9 July 2021, Jul 2021, Nice, France. Doi: 10.5194/isprs-archives-XLIIIB2-2021-599-2021.

Niclass, C., Soga, M., Matsubara, H., Ogawa, M., and Kagami, M., 2014. A 0.18-m cmos soc for a 100-m-range 10-frame/s 200× 96-pixel time-of-flight depth sensor. IEEE Journal of Solid-State Circuits, 49(1), pp. 315–330. Doi:10.1109/JSSC.2013.2284352.

Nocerino, E., Menna, F., Remondino, F., Toschi, I., and Rodríguez-Gonzálvez, P., 2017, June. Investigation of indoor and outdoor performance of two portable mobile mapping systems. In Videometrics, Range Imaging, and Applications XIV (Vol. 10332, pp. 125-139). SPIE. Doi:10.1117/12.2270761.

Olsen, M.J., 2013. Guidelines for the use of mobile LIDAR in transportation applications (Vol. 748). Transportation Research Board.

Padmanabhan, P., 2021. Direct time-of-flight SPAD image sensors for light detection and ranging (No. 8231). EPFL Doi:10.5075/epfl-thesis-8231.

Padmanabhan, P., Zhang, C., and Charbon, E., 2019. Modeling and analysis of a direct time-of-flight sensor architecture for LiDAR applications. Sensors, 19(24), P. 5464. Doi:10.3390/s19245464.

Park, D., 2020. Indirect time-of-fight sensor with in-pixel adaptable background light suppression based on delta-sigma technique (Master's thesis, Graduate School of UNIST).

Peiravi, A., and Taabbodi, B., 2010. A reliable 3D laser triangulation-based scanner with a new simple but accurate procedure for finding scanner parameters. Journal of American Science, 6(5), pp. 80-85.

Pöppl, F., Pfennigbauer, M., Ullrich, A., and Pfeifer, N., 2023, June. Trajectory estimation with GNSS, IMU, and LiDAR for terrestrial/kinematic laser scanning. Laser Radar Technology and Applications XXVIII (Vol. 12537, pp. 29-38). SPIE. Doi:10.1117/12.2663454.

Putch A., 2022. User Guide – SiteScape. <https://support.sitescape.ai/hc/en-us/articles/4419890619284-User-Guide> [Accessed 14 November 2022].

Rasshofer, R.H., Spies, M., and Spies, H., 2011. Influences of weather phenomena on automotive laser radar systems. Advances in radio science, 9, pp. 49-60. Doi: 10.5194/ars-9-49-2011

Remondino, F., and Stoppa, D., 2013. TOF range-imaging cameras (Vol. 68121). Heidelberg, Germany: Springer. Doi:10.1007/978-3-642-27523-4

Rodríguez-Gonzálvez, P., Jimenez Fernandez-Palacios, B., Muñoz-Nieto, Á.L., Arias-Sanchez, P., and Gonzalez-Aguilera, D., 2017. Mobile LiDAR system: New possibilities for the documentation and dissemination of large cultural heritage sites. Remote Sensing, 9(3), P. 189. Doi:10.3390/rs9030189.

Royo, S., and Ballesta-Garcia, M., 2019. An overview of lidar imaging systems for autonomous vehicles. Applied sciences, 9(19), P. 4093. Doi:10.3390/app9194093.

San José Alonso, J.I., Martínez Rubio, J., Fernández Martín, J.J., and García Fernández, J., 2012. Comparing time-of-flight and phase-shift. The survey of the Royal Pantheon in the Basilica of San Isidoro (León). The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 38, pp. 377-385. Doi:10.5194/isprsarchives-XXXVIII-5-W16-377-2011.

Shan, J., and Toth, C.K., 2018. Topographic laser ranging and scanning: principles and processing. 2 edition, CRC press. ISBN: 1498772285, 9781498772280

Shanoer, M.M., and Abed, F.M., 2018. Evaluate 3D laser point clouds registration for cultural heritage documentation. The Egyptian Journal of Remote Sensing and Space Science, 21(3), pp. 295-304. Doi:10.1016/j.ejrs.2017.11.007.

Shi, P., and Peng, Y., 2022. Simulation Research on Automatic Navigation of Indoor Wheelchair. International Conference on Artificial Life and Robotics (ICAROB2022), January 20 to 23, pp. 932-937.

Spreafico, A., Chiabrando, F., Teppati Losè, L., and Giulio Tonolo, F., 2021. The iPad Pro built-in lidar sensor: 3D rapid mapping tests and quality assessment. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives. International Society for Photogrammetry and Remote Sensing. pp. 63–69. Doi:10.5194/isprs-archives-XLIII-B1-2021-63-2021 .

Stal, C., Verbeurgt, J., De Sloover, L., and De Wulf, A., 2021. Assessment of handheld mobile terrestrial laser scanning for estimating tree parameters. Journal of Forestry Research, 32, pp. 1503-1513. Doi:10.1007/s11676-020-01214-7 .

Suchocki, C., 2020. Comparison of time-of-flight and phase-shift TLS intensity data for the diagnostics measurements of buildings. Materials, 13(2), P. 353. Doi:10.3390/ma13020353.

Suchocki, C., Damięcka-Suchocka, M., Katzer, J., Janicka, J., Rapiński, J., and Stałowska, P., 2020. Remote detection of moisture and bio-deterioration of building walls by time-of-flight and phase-shift terrestrial laser scanners. Remote Sensing, 12(11), P. 1708. Doi.:10.3390/rs12111708.

Suh, Y.S., 2019. Laser sensors for displacement, distance and position. Sensors, 19(8), P. 1924. Doi:10.3390/s19081924.

Tan, K., Zhang, W., Shen, F., and Cheng, X., 2018. Investigation of TLS intensity data and distance measurement errors from target specular reflections. Remote Sensing, 10(7), P. 1077. Doi:10.3390/rs10071077.

Teppati Losè, L., Spreafico, A., Chiabrando, F., and Giulio Tonolo, F., 2022. Apple LiDAR sensor for 3D surveying: tests and results in the cultural heritage domain. Remote Sensing, 14(17), P. 4157. Doi:10.3390/rs14174157 .

Tontini, A., Gasparini, L., and Perenzoni, M., 2020. Numerical model of SPAD-Based direct time-of-flight flash LIDAR CMOS Image sensors. Sensors, 20(18), P. 5203. Doi:10.3390/s20185203.

Villa, F., Severini, F., Madonini, F., and Zappa, F., 2021. SPADs and SiPMs arrays for long-range high-speed light detection and ranging (LiDAR). Sensors, 21(11), P. 3839. Doi:10.3390/s21113839

Vogt, M., Rips, A., and Emmelmann, C., 2021. Comparison of iPad Pro®’s LiDAR and TrueDepth capabilities with an industrial 3D scanning solution. Technologies, 9(2), P. 25. Doi.10.3390/technologies9020025.

Wajs, J., Trybała, P., Górniak-Zimroz, J., Krupa-Kurzynowska, J., and Kasza, D., 2021. Modern solution for fast and accurate inventorization of open-pit mines by the active remote sensing technique—case study of mikoszów granite mine (lower Silesia, sw poland). Energies, 14(20), P. 6853. Doi:10.3390/en14206853

Wang, C., Wen, C., Dai, Y., Yu, S., and Liu, M., 2020. Urban 3D modeling using mobile laser scanning: A review. Virtual Reality & Intelligent Hardware, 2(3), pp. 175-212. Doi.org/10.1016/j.vrih.2020.05.003.

Yamada, K., Akihito, K., Takasawa, T., Yasutomi, K., Kagawa, K., and Kawahito, S., 2018. A distance measurement method using a time-of-flight cmos range image sensor with 4-tap output pixels and multiple time-windows. Electronic Imaging, 30, pp. 1-4. Doi:10.2352/ISSN.2470-1173.2018.11.IMSE-326.

Yang, T., Li, Y., Zhao, C., Yao, D., Chen, G., Sun, L., Krajnik, T., and Yan, Z., 2022. 3D ToF LiDAR in mobile robotics: A review. arXiv preprint arXiv:2202.11025. Doi:10.48550/arXiv.2202.11025

Yoon, H., Song, H., and Park, K., 2011. A phase-shift laser scanner based on a time-counting method for high linearity performance. Review of Scientific Instruments, 82(7). P. 0751. Doi:10.1063/1.3600456.

Zaczek-Peplinska, J., and Kowalska, M., 2022. Evaluation of the LiDAR in the Apple iPhone 13 Pro for use in Inventory Works. Department of Engineering Geodesy and Control Surveying Systems, Tech. Rep. Warsaw, Poland.

Zhu, L., and Hyyppa, J., 2014. The use of airborne and mobile laser scanning for modeling railway environments in 3D. Remote Sensing, 6(4), pp. 3075-3100. Doi:10.3390/rs6043075

Zlot, R., Bosse, M., Greenop, K., Jarzab, Z., Juckes, E., and Roberts, J., 2014. Efficiently capturing large, complex cultural heritage sites with a handheld mobile 3D laser mapping system. Journal of Cultural Heritage, 15(6), pp. 670-678.Doi:10.1016/j.culher.2013.11.009.

Similar Articles

You may also start an advanced similarity search for this article.