Drought Assessment based on Different Metrological Drought indices in Sulaymaniyah Governorate, KRG, Iraq

Main Article Content

Haveen Muhammed Rashid

Abstract

Drought is a dangerous situation that lowers individual standards of living. It is considered a devastating natural event. This study intends to thoroughly examine the occurrence and characteristics of drought events in the Sulaymaniyah Governorate from 1985 to 2015. The study employed three standardized indices: the standardized precipitation evapotranspiration index (SPEI), the standardized precipitation index (SPI), and the Reconnaissance Drought Index (RDI). These indices were utilized at different periods, namely 3, 6, 9, and 12 months. According to findings, the maximum percent of extremely dry highlighted in Sulaymaniyah and Dukan stations for SPI index and time scale three months was 48% and 30%, respectively; the maximum percent of severely dry highlighted using RDI index and time scale three months with 41%, 32%, 44% in Sulaymaniyah, Dukan, and Darbandikhan stations respectively. Results revealed that the years 1998, 1999, 2000, 2007, 2008,  2009, and 2010 saw a drought for the used indices, Dukan station has the maximum severity of 112.25 for SPEI12 for the event happened from Nov. 2007 to Sep 2015. The maximum durations were observed at Dukan station using SPI and SPEI as well, and Darbandikhan station has the highest drought frequency. The correlations of drought indices, using the coefficient of determination ( ) showed the lowest and highest agreement between SPI-SPEI and SPI-RDI, respectively. The findings revealed that water resources in the study area are at risk of depletion due to drought. Therefore, water management techniques are required to mitigate drought in the study area.

Article Details

How to Cite
“Drought Assessment based on Different Metrological Drought indices in Sulaymaniyah Governorate, KRG, Iraq” (2024) Journal of Engineering, 30(9), pp. 190–215. doi:10.31026/j.eng.2024.09.10.
Section
Articles

How to Cite

“Drought Assessment based on Different Metrological Drought indices in Sulaymaniyah Governorate, KRG, Iraq” (2024) Journal of Engineering, 30(9), pp. 190–215. doi:10.31026/j.eng.2024.09.10.

Publication Dates

Received

2023-12-12

Revised

2024-03-15

Accepted

2024-03-17

Published Online First

2024-09-01

References

Abdulrazzaq, Z.T., Hasan, R.H., and Aziz, N. A., 2019. Integrated TRMM Data and Standardized Precipitation Index to. Civil Engineering Journal, 5(7), pp. 1590-1598. https://doi.org/10.28991/cej-2019-03091355

Ahmed, G., and Al-Manmi, D., 2021. Trend detection of average annual rainfall and temperature in Sulaymaniyah governorate, Iraq. Anbar Journal of Agricultural Sciences, 19(2), pp. 221-233. https://doi.org/10.32649/AJAS.2021.175995

Ahmed, M.B., Muavia, A., Iqbal, M., Arshed, A., and Ahmad, M. M, 2023. Spatio-temporal drought assessment and comparison of drought indices under climatic variations in drought-prone areas of Pakistan. Water and Climate Change, 14(10), p. 3726–3752. https://doi.org/10.2166/wcc.2023.602

Alee, M.M., Mehr, A. D., Akdegirmen, O., and Nourani, V., 2023. Drought Assessment across Erbil Using Satellite Products. Sustainability, 15(8), P. 6687. https://doi.org/10.3390/su15086687

Alobaidy, A., Abid, H., and Maulood, B., 2010. Application of Water Quality Index for Assessment of Dokan Lake Ecosystem, Kurdistan Region, Iraq. Journal of Water Resource and Protection, 2(9). https://doi.org/10.4236/jwarp.2010.29093

Al-Quraishi, A., Gaznayee, H., and Crespi, M., 2021. Drought trend analysis in a semi-arid area of Iraq based on Normalized Difference Vegetation Index, Normalized Difference Water Index, and Standardized Precipitation Index. Arid Land, Volume 13, p. 413–430. https://doi.org/10.1007/s40333-021-0062-9

Asadi Zarch, M. A., Malekinezhad, H., Mobin, M. H., Dastorani, M. t., and Kousari, M. r., 2011. Drought Monitoring by Reconnaissance Drought Index (RDI) in Iran. Water Resources Management, 25, pp. 3485–3504. https://doi.org/10.1007/s11269-011-9867-1

Bazrafshan, O., Mahmoudzadeh, F., Asgarinezhad, A., and Bazrafshan, J., 2019. Adaptive Evaluation of SPI, RDI, and SPEI indices in Analyzing the. Journal of Irrigation Sciences and Engineering, 42(3), pp. 117-131. https://doi.org/10.22055/JISE.2017.22113.1585

Chandrasekara, S.S.K., Kwon, H.H., Vithanage, M., Obeysekera, J., and Kim, T.W., 2021. Drought in South Asia: A Review of drought assessment and prediction in South Asian Countries. Atmosphere, 12(3). https://doi.org/10.3390/atmos12030369

Chen, H., and Sun, J., 2015. Changes in drought characteristics over China using the standardized precipitation evapotranspiration index. Climate, 28, p. 5430–5447. https://doi.org/10.1175/JCLI-D-14-00707.1

Cheval, S., 2015. The Standardized Precipitation Index. Romanian Journal of Meteorology, 12(1-2), pp. 17-49.

Crausbay, S.D., Ramirez, A.R., Carter, S.L., Cross, M.S., Hall, K.R., Bathke, D.J., Betancourt, J.L., Colt, S., Cravens, A.E.,

Dalton, M.S., Dunhan, J.B., Hay, L.E., Hayes, M.J., McEvoy, J., McNutt, C., Moritz, M.A., Nislow, K.H., Raheem, N., and Sanford, T., 2017. Defining ecological drought for the Twenty-First Century. Bulletin of the American Meteorological Society, 98(12), p. 2543–2550. https://doi.org/10.1175/BAMS-D-16-0292.1

Dalezios, N. R., Dercas, N., and Eslamian, S., 2018. Water scarcity management: part 2: satellite-based composite drought analysis. International Journal of Global Environment, 17. https://doi.org/ 10.1504/IJGENVI.2018.10012400

Dilawar, A., Chen, B., Ashraf, A., Kayiranga, A., Hussain, Y., Ali, S., Jinghong, J., Shafeeque, M., Boyang, S., Sun, X., and Hussain, S., 2022. Development of a GIS-based hazard, exposure, and vulnerability analyzing method for monitoring drought risk in Karachi, Pakistan. Geomatics, Natural Hazards and Risk, 13(1), pp. 1700-1720. https://doi.org/10.1080/19475705.2022.2090863

Edwards, D., and McKee, t., 1997. Characteristics of 20th-century drought in the United States at multiple time scales., pp. 152-155. https://doi.org/10217/170176

Fadhil, A.M., 2011. Drought mapping using Geoinformation technology for some sites in the Iraqi Kurdistan region. International Journal of Digital Earth, 4(3), pp. 239-257. https://doi.org/10.1080/17538947.2010.489971

Farahmand, A., AghaKouchak, A,. and Teixeira, J., 2015. A vantage from space can detect earlier drought onset: An approach using relative humidity, https://doi.org/10.1038/srep08553

Farsani , N.T., Jamshidi , H.M., Mortazavi , M., and Eslamian S., 2021. Water harvesting and sustainable tourism. In: water harvesting and conservation: basic concepts and fundamentals. John Whiley and Sons Ld., pp. 447-455. https://doi.org/10.1002/9781119478911.ch29

Gaznayee, H.A.A., Al-Quraishi, A.M.F., Mahdi, K., Messina, J.P., Zaki, S.H., Razvanchy, H.A.S., Hakzi, K., Huebner, L., Ababakr, S.H., and Riksen, M., 2022. Drought severity and frequency analysis aided by spectral and meteorological indices in the Kurdistan Region of Iraq. Water, Sep 26, 14(19), p. 3024. https://doi.org/10.3390/w14193024

Gaznayee, H., Al-Quraishi, A., Mahdi, K., and Ritsema, C., 2022. A geospatial approach for analysis of drought impacts on vegetation cover and land surface temperature in the Kurdistan Region of Iraq. Water, Mar 16, 14(6), P. 927. https://doi.org/10.3390/w14060927

Gil-Quintana, E., Larrainzar, E., Seminario, A., Díaz-Leal, J.L., Alamillo, J.M., Pineda, M., and González, E.M., 2013. 1- Local inhibition of nitrogen fixation and nodule metabolism in drought-stressed soybean. Experimental Botany, April, 64(8), pp. 2171-2182. https://doi.org/10.1093/jxb/ert074

Hameed, M., Ahmadalipour, A., and Moradkhani, H., 2018. Apprehensive Drought Characteristics over Iraq. Geosciences, 8(2). https://doi.org/10.3390/geosciences8020058

Jamro, S., Dars, G.M., Ansari, K., and Krakauer, N.Y., 2019. Spatio-temporal variability of drought in Pakistan using standardized precipitation evapotranspiration index. Applied Sciences, 9(21), P. 4588. https://doi.org/10.3390/app9214588

Jasim, A.I., and Awchi, T., 2020. regional meteorological drought assessment in Iraq. Arabian Journal of Geosciences, 13(7). https://doi.org/10.1007/s12517-020-5234-y

Kartal, V., 2023. Assessment of drought using different tests and drought indices in Elazig, Turkey. Water Science and Technology, 88(7), p. 1767–1794. https://doi.org/10.2166/wst.2023.315

Kartika, F., and Wijayanti, P., 2023. Drought disaster modeling using drought index: a systematic literature review. https://doi.org/10.1088/1755-1315/1190/1/012026

Kourtis, I.M., Vangelis, H., Tigkas, D., Mamara, A., Nalbantis, I., Tsakiris, G., and Tsihrintzis, V.A., 2023. Drought assessment in Greece using SPI and ERA5 climate reanalysis data. Sustainability, 15(22), P. 15999. https://doi.org/10.3390/su152215999

Kousari, M.R., Dastorani, M.T., Niazi, Y., Soheili, E., Hayatzadeh, M., and Chezgi, J., 2014. Trend detection of drought in arid and semi-arid regions of Iran based on implementation of Reconnaissance Drought Index (RDI) and application of non-parametrical statistical method. Water Resources Management, 28, p. 1857–1872. https://doi.org/10.1007/s11269-014-0558-6

Li, X., He, B., Quan, X., Liao, Z. and Bai, X., 2015. Use of the standardized precipitation evapotranspiration index (SPEI) to characterize the drying trend in southwest China from 1982–2012. Remote Sensing, 7(8), pp.10917-10937. https://doi.org/10.3390/rs70810917

Lotfirad, M., Esmaeili-Gisavandani, H., and Adib, A., 2021. Drought monitoring and prediction using SPI, SPEI, and random forest model in various. Water and Climate Change, 13(2). https://doi.org/10.2166/wcc.2021.287

McKee, T., Doesken, N., and Kleist, J., 1993. The relationship of drought frequency and duration to time scale. Anaheim, California, Boston American Meteorological Society, p. 179–184.

McKee, T., Doesken, N., and Kleist, J., 1995. Drought monitoring with multiple timescales. Dallas, Texas, Boston American Meteorological Society, pp. 233-236.

Mohan, K., Ramasamy, A., and Varghese, J., 2021. Drought severity assessment using automated land surface temperature retrieval technique. Arabian Journal of Geosciences, 14(22). https://doi.org/10.1007/s12517-021-08672-1

Montes-Vega, M., Guardiola-Albert, C., and Rodríguez-Rodríguez, M., 2023. Calculation of the SPI, SPEI, and GRDI indices for historical climatic data from Doñana National Park: Forecasting climatic series (2030–2059) using two climatic scenarios RCP 4.5 and RCP 8.5 by IPCC. Water, 15(13), P. 2369. https://doi.org/10.3390/w15132369

Muse, N.M., Tayfur, G., and Sadegh Safari, M.J., 2023. Meteorological drought assessment and trend analysis in Puntland Region of Somalia. Sustainability, 15(13), P. 10652. https://doi.org/10.3390/su151310652

Mustafa, N., Ibrahim, H., and Rashid, H., 2018. Aridity index based on temperature and rainfall data for Kurdistan Region-Iraq. Journal of Duhik University Pure and Engineering Science, 21(1), pp. 65-80. https://doi.org/10.26682/sjuod.2018.21.1.6

Naz, F., Dars, G.H., Ansari, K., Jamro, S., and Krakauer, N.Y., 2020. Drought Trends in Balochistan. Water, 12(2), P. 470. https://doi.org/10.3390/w12020470

Ng, J.L., Huang, Y.F., Chong, A.H., Lee, J.C., Abdulkareem, M., Noh, N.Md., Mirzaei, M., and Ahmed, A. N., 2023. Comparative assessment of drought indices for evaluating drought patterns in Peninsular Malaysia. Water and Climate Change, 14(11), pp. 4183–4197. https://doi.org/10.2166/wcc.2023.546

Nikravesh, G., Aghababaei, M., Nazari-Sharabian, M., and Karakouzian, M., 2020. Drought frequency analysis based on the development of a two-variate standardized index (Rainfall-Runoff). Water, 12(9), P. 2599. https://doi.org/10.3390/w12092599

Orimoloye, I.R., Belle , J.A., Olusola , A.O., Busayo , E.T., and Ololade, O.O., 2021. Spatial assessment of drought disasters, vulnerability, severity, and water shortages: a potential drought disaster mitigation strategy. Natural Hazards, 105(3), pp. 2735-2754. https://doi.org/ 10.1007/s11069-020-04421-x

Pillai, S., Anagha, B., Raja, P., Veluswamy, K., Rajan, K., and Manickam, J., 2019. Analysis of drought from humid, semi-arid, and arid regions of India using DrinC model with different drought indices. Water Resources Management, 33, pp. 1521–1540. https://doi.org/10.1007/s11269-019-2188-5

Plummer, R., and Baird, J. M., 2021. The emergence of water resilience: An introduction. Water Resilience, pp. 3-19. https://doi.org/10.1007/978-3-030-48110-0_1

Rashid, H.M., 2021. Modeling groundwater potential zones across Sulaymaniyah governorate using geographic information system and multi-influencing factor techniques. UHD Journal of Science and Technology, 5(1), pp. 13-20. https://doi.org/10.21928/uhdjst.v5n1y2021.pp13-20

Shi , S., Yu , J., Wang , F., Wang , P., Zhang , Y., and Jin , K., 2021. Quantitative contributions of climate change and human activities to vegetation changes over multiple time scales on the Loess Plateau. Science of the total environment, 755(prt2). https://doi.org/ 10.1016/j.scitotenv.2020.142419

Smakhtin, V., and Schipper, L., 2008. Droughts: The impact of semantics and perceptions. Water Policy, 10, pp. 131-143. https://doi.org/10.2166/wp.2008.036

Svoboda, M., Hayes, M., and Wood, D., 2012. World metrological organization: standardized precipitation index user guide (WMO-No. 1090), Geneva: https://library.wmo.int/idurl/4/39629

Tigkas, D., Vangelis, H., and Tsakiris, G., 2015. DrinC: a software for drought analysis based on drought indices. Earth Science Informatics, 8, pp. 697–709. https://doi.org/10.1007/s12145-014-0178-y

Tsakiris, G., Pangalou, D., and Vangelis, H., 2007c. Regional drought assessment based on the Reconnaissance Drought Index (RDI). Water Resources Management, 21, p. 821–833. https://doi.org/10.1007/s11269-006-9105-4

Tsakiris, G., and Vangelis, H., 2005. Establishing a drought index incorporating evapotranspiration. Europian Water, 9(10), pp. 3-11.

UNDP, 2011. Drought impact assessment, recovery and mitigation framework and regional project design in Kurdistan Region (KR), UNDP.

UNESCO, 2014. Integrated drought risk management, DRM: a national framework for Iraq, An Analysis Report, s.l.: s.n.

USGS, 2019. United States Geological survey. [Online] Available at: https://earthexplorer.usgs.gov/

Vicente-Serrano, S., Beguería, S., and López-Moreno, J., 2010. A multiscalar drought index sensitive to global warming: The standardized precipitation evapotranspiration index. Journal of Climate, 23(7), pp. 1696–1718. https://doi.org/10.1175/2009JCLI2909.1

Wilhite, D.A., and Glantz, M.H., 1985. Understanding the drought phenomenon: the role of definitions. Water International, 10, pp. 111-120. https://doi.org/10.1080/02508068508686328

WMO, and GWP, 2016. Handbook of drought indicators and indices. British Medical Journal, 1(2366). https://doi.org/10.1136/bmj.1.2366.1068-b.

Yaseen, A.K., Mahmood, M.I., Yaseen, G.K., Ali, A.A., Hh, M., and Mustafa, A.H., 2018. Area change monitoring of Dokan and Darbandikhan Iraqi lakes using satellite data. Sustainable Resources Management Journal, 32, pp. 25-41. https://doi.org/10.5281/zenodo.128484

Yu, W., Li, Y., Cao, Y., and Schillerberg, T.A., 2019. Drought assessment using GRACE terrestrial water storage deficit in Mongolia from 2002 to 2017. Water, 11(6). https://doi.org/10.3390/w11061301

Zhang, D., Sial, M.S., Ahmad, N., Fillipe, A.J., Thu, P.A., Zia-Ud-Din, M., and Caleiro, A.B., 2020. Water scarcity and sustainability in an emerging economy: a management perspective for future. Sustainability, 13(1). https://doi.org/10.3390/su13010144

Zhang, P., Cai, Y., Cong, P., Xie, Y., Chen, W., Cai, J., and Bai, X., 2024. Quantitation of meteorological, hydrological, and agricultural drought under climate change in the East River basin of south China. Ecological Indicators, 158. https://doi.org/10.1016/j.ecolind.2023.111304

Similar Articles

You may also start an advanced similarity search for this article.