A Half Decade Reviews and Controller Design for the Bergman Diabetic Patient Model
Main Article Content
Abstract
With an emphasis on individuals with Type 1 diabetes, this study reviews blood glucose management techniques during the last five years. A brief introduction is provided to show how this biological issue turns out to be a control system issue in terms of plasma blood glucose management. This paper discusses new research on automated insulin delivery using the Bergman mathematical model. An attempt has been made to undertake a systematic review of the research that has been done so far in the development of artificial pancreas systems. The conclusion describes the development of a cognitive glucose-insulin controller and provides a fundamental grasp of how the nonlinear Bergman model for blood glucose regulation can be used to establish a control system for this biomedical control challenge. When compared to other current methods, the proposed cognitive controller shows a quicker response in terms of blood glucose maintenance. Additionally, the comparison results demonstrated that the suggested cognitive glucose-insulin control algorithm improved the time to reach a normal physiological blood glucose level for the first patient by 10% compared to the fuzzy logic and the fractional-order PID control algorithms, by 25% compared to the type-2 fuzzy control algorithm.
Article Details
Section
How to Cite
References
Abadi, D.N.M., Khooban, M.H., Alfi, A. and Siahi, M., 2014. Design of optimal self-regulation Mamdani-type fuzzy inference controller for type I diabetes mellitus. Arabian Journal for Science and Engineering, 39, pp.977-986. https://doi.org/10.1007/s13369-013-0673-3.
Al-Araji, A.S., Ahmed, A.K. and Dagher, K.E., 2019. A cognition path planning with a nonlinear controller design for wheeled mobile robot based on an intelligent algorithm. Journal of Engineering, 25(1), pp.64-83. https://doi.org/10.31026/j.eng.2019.01.06.
Al-Bayati, A.Q., Al-Araji, A.S. and Ameen, S.H., 2020. Arabic sentiment analysis (ASA) using deep learning approach. Journal of Engineering, 26(6), pp.85-93. https://doi.org/10.31026/j.eng.2020.06.07.
Alkahtani, B.S., Algahtani, O.J., Dubey, R.S. and Goswami, P., 2017. The solution of modified fractional Bergman’s minimal blood glucose-insulin model. Entropy, 19(5), 114. https://doi.org/10.3390/e19050114.
Almazini, H. and Ku-Mahamud, K. R. 2021. Grey Wolf optimization parameter control for feature selection in anomaly detection. International Journal of Intelligent Engineering and Systems, 14(2), pp. 474-483. https://doi.org/10.22266/ijies2021.0430.43.
Almazini, H. F., Ku-Mahamud, K. R. and Almazini, H., 2023. Heuristic initialization using Grey Wolf Optimizer algorithm for feature selection in intrusion detection. International Journal of Intelligent Engineering and Systems, 16(1), pp. 410-418. https://doi.org/10.22266/ijies2023.0228.36.
Babar, S.A., Ahmad, I. and Mughal, I.S., 2021. Sliding‐mode‐based controllers for automation of blood glucose concentration for type 1 diabetes. IET Systems Biology, 15(2), pp.72-82. https://doi.org/10.1049/syb2.12015.
Benzian, S., Ameur, A. and Rebai, A., 2021. Design an optimal fractional order PID controller based on new algorithms and a fuzzy logic controller to regulate type 1 diabetes patients. Journal Européen des Systèmes Automatisés, 54(3), pp. 381-394. https://doi.org/10.18280/jesa.540301.
Benzian, S., Rebai, A. and Ameur, A., 2019. Optimal digital PID controller design for regulating blood glucose level of type-I diabetic patients. International Journal of Digital Signals and Smart Systems, 3(1-3), pp.137-149. https://doi.org/10.1504/IJDSSS.2019.103391.
Bergman, R.N., Phillips, L.S. and Cobelli, C., 1981. Physiologic evaluation of factors controlling glucose tolerance in man: measurement of insulin sensitivity and beta-cell glucose sensitivity from the response to intravenous glucose. The Journal of clinical investigation, 68(6), pp.1456-1467. https://doi.org/10.1172/JCI110398.
Chinnababu, S.K. and Jayachandra, A., 2024. Diabetes prediction and classification using self-adaptive evolutionary algorithm with convolutional neural network. International Journal of Intelligent Engineering & Systems, 17(3), pp. 460-472. http://doi.org/10.22266/ijies2024.0630.36.
Crecil Dias, C., Kamath, S. and Vidyasagar, S., 2020. Blood glucose regulation and control of insulin and glucagon infusion using single model predictive control for type 1 diabetes mellitus. IET Systems Biology, 14(3), pp.133-146. https://doi.org/10.1049/iet-syb.2019.0101.
Dagher, K.E., 2018. A nonlinear MIMO-PID neural controller design for vehicle lateral dynamics model based on modified Elman neural network. Journal of Engineering, 24(1), pp.173-191. https://doi.org/10.31026/j.eng.2018.01.12.
Dagher, K.E., 2018. Design of an adaptive neural voltage-tracking controller for nonlinear Proton Exchange Membrane Fuel Cell System based on optimization algorithms. Journal of Engineering and Applied Sciences, 13(15), pp.6188-6198. https://doi.org/10.3923/jeasci.2018.6188.6198.
de Farias, J.L.C.B. and Bessa, W.M., 2022. Intelligent Control with Artificial Neural Networks for Automated Insulin Delivery Systems. Bioengineering 2022, 9(664), pp. 1-19. https://doi.org/10.3390/bioengineering9110664.
Engell, S.E., Aradóttir, T.B., Bengtsson, H., Ekelund, M. and Jørgensen, J.B., 2021. Glucose response to fast-and long-acting insulin in people with type 2 diabetes. IFAC-PapersOnLine, 54(15), pp.496-501. https://doi.org/10.1016/j.ifacol.2021.10.305.
Gao, B., Guan, H., Shen, W. and Ye, Y., 2022. Application of the Gray Wolf Optimization algorithm in active disturbance rejection control parameter tuning of an electro-hydraulic servo unit. Machines, 10(8), pp. 1-20. https://doi.org/10.3390/machines10080599.
Gudiño-Ochoa, A., García-Rodríguez, J.A., Cuevas-Chávez, J.I., Ochoa-Ornelas, R., Navarrete-Guzmán, A., Vidrios-
Serrano, C. and Sánchez-Arias, D.A., 2024. Enhanced diabetes detection and blood glucose prediction using TinyML-Integrated E-Nose and breath analysis: A novel approach combining synthetic and real-world data. Bioengineering, 11(11), 1065. https://doi.org/10.3390/bioengineering11111065.
Hettiarachchi, C., Malagutti, N., Nolan, C.J., Suominen, H. and Daskalaki, E., 2024. G2P2C A modular reinforcement learning algorithm for glucose control by glucose prediction and planning in type 1 diabetes. Biomedical Signal Processing and Control, 90, 105839. https://doi.org/10.1016/j.bspc.2023.105839.
Homayounzade, M., 2024. Observer‐based controller design for blood glucose regulation for type 1 diabetic patients with disturbance estimation: A backstepping approach. Asian Journal of Control, 26(6), pp.2933-2947. https://doi.org/10.1049/syb2.12049.
Incremona, G.P., Messori, M., Toffanin, C., Cobelli, C. and Magni, L., 2018. Model predictive control with integral action for artificial pancreas. Control engineering practice, 77, pp.86-94. https://doi.org/10.1016/j.conengprac.2018.05.006.
Kaçar, A., Özer, M.B. and Taşcıoğlu, Y., 2020. A novel artificial pancreas: Energy efficient valveless piezoelectric actuated closed-loop insulin pump for T1DM. Applied Sciences, 10(15), 5294.https://doi.org/10.3390/app10155294.
Kalaimani, S.C. and Jeyakumar, V., 2024. Design of robust evolving cloud-based controller for type 1 diabetic patients using n-beats algorithm. Brazilian Archives of Biology and Technology, 67, e24230857.
Khaqan, A., Nauman, A., Shuja, S., Khurshaid, T. and Kim, K.C., 2022. An intelligent model-based effective approach for glycemic control in type-1 diabetes. Sensors, 22(20), 7773. https://doi.org/10.3390/s22207773.
Kraiem, H., Aymen, F., Yahya, L., Triviño, A., Alharthi, M. and Ghoneim, S. S. M. A, 2021. Comparison between Particle Swarm and Grey Wolf Optimization algorithms for improving the battery autonomy in a photovoltaic system. Applied Sciences (Basel), 11(16), pp. 1-19. https://doi.org/10.3390/app11167732.
Liu, W., 2019. A mathematical model for the robust blood glucose tracking. Mathematical Biosciences and Engineering, 16(2), pp.759-781. https://doi.org/10.3934/mbe.2019036.
Narendra, K.S. and Parthasarthy, K. 1990, Identification and control of dynamical systems using neural networks. IEEE Transactions on Neural Networks, 1(1), pp. 4-27. https://doi.org/10.1109/72.80202.
Nath, A., Deb, D., Dey, R. and Das, S., 2018. Blood glucose regulation in type 1 diabetic patients: An adaptive parametric compensation control‐based approach. IET systems biology, 12(5), pp.219-225. https://doi.org/10.1049/iet-syb.2017.0093.
Ogata, K., 2010, Modern Control Engineering, 5th Edition, by Addison- Wesley Publishing Company. ISBN 13: 978-0-13-615673-4.
Patra, A.K. and Nanda, A., 2021. Model predictive controller design based on the laguerre functions for blood glucose regulation in TIDM patient. Journal of The Institution of Engineers (India): Series B, 102(2), pp.237-248. https://doi.org/10.1007/s40031-021-00549-x.
Patra, A.K. and Panigrahi, G.S., 2023. An adaptive control algorithm for blood glucose regulation in type-I diabetes Mellitus patients. Decision Analytics Journal, 8, 100276. https://doi.org/10.1016/j.dajour.2023.100276.
Pujol-Vázquez, G., Acho, L. and Gibergans-Báguena, J., 2023. Commuted PD controller for nonlinear systems: Glucose–Insulin regulatory case. Applied Sciences, 13(14), 8129. https://doi.org/10.3390/app13148129.
Qteat, H. and Awad, M., 2021. Using hybrid model of particle swarm optimization and multi-layer perceptron neural networks for classification of diabetes. International Journal of Intelligent Engineering & Systems, 14(3), pp. 11-23. https://doi.org/10.22266/ijies2021.0630.02.
Rivai, M. and Kurniawan, F., 2023. Diabetes detection using Carbon Nanomaterial Coated QCM Gas sensors and a convolutional neural network through urine sample. International Journal of Intelligent Engineering & Systems, 16(5), pp. 417-427. http:/doi.org/10.22266/ijies2023.1031.36.
Saleem, O. and Iqbal, J., 2023. Complex-order PID controller design for enhanced blood-glucose regulation in type-I diabetes patients. Measurement and Control, 56(9-10), pp.1811-1825. https://doi.org/10.1177/00202940231189504.
Sayed, A., Zalam, B.A., Elhoushy, M. and Nabil, E., 2023. Optimized type-2 fuzzy controller based on IoMT for stabilizing the glucose level in type-1 diabetic patients. Scientific Reports, 13(1), 14508. https://doi.org/10.1038/s41598-023-41522-6.
Sharma, R., Basu, A. and Mohanty, S., 2022. Designing of digital PID controller for blood glucose level of diabetic patient by using various tuning methods. SSRG International Journal of Electrical and Electronics Engineering, 9(2), pp.1-5. https://doi.org/10.14445/23488379/IJEEE-V9I2P101.
Shenbagam, M., Kanagaraj, G., Giri, J., Yu, V.F., Qin, H. and Mallik, S., 2024. Optimizing blood glucose regulation in type 1 diabetes: A fractional order controller approach. AIP Advances, 14(4), pp. 045331-10. https://doi.org/10.1063/5.0199980.
Xavier, J., Divya, N., Krithiga, M. B., Patnaik, S. K., and Panda, R. C., 2022, Blood glucose regulation in type-1 diabetic patients using sliding mode control based on nonlinear transformation. IFAC Papers OnLine, 55(1), pp. 902-907. https://doi.org/10.1016/j.ifacol.2022.04.148.
Yan, S.R., Alattas, K.A., Bakouri, M., Alanazi, A.K., Mohammadzadeh, A., Mobayen, S., Zhilenkov, A. and Guo, W., 2022. Generalized type-2 fuzzy control for type-I diabetes: Analytical robust system. Mathematics, 10(5), 690. https://doi.org/10.3390/math10050690.
Yazdani, N.M. and Moghaddam, R.K., 2021. Blood glucose regulation in patients with type 1 diabetes by robust optimalsafety-critical control. Frontiers in Health Informatics, 10(1), pp. 1-11. https://doi.org/10.30699/fhi.v10i1.286.