Performance Evaluation of Perovskite Solar Module of Wide Range Operating Conditions
Main Article Content
Abstract
Solar energy is considered a sustainable and clean source of power. Even so, solar cells face challenges such as the low efficiency of some systems and the need for large installation areas. Therefore, efforts have been directed toward developing technologies like perovskite solar cells to improve efficiency and reduce the need for large spaces. The experimental work was conducted under outdoor exposure in Baghdad, Al-Jaderia. The readings were taken on selected days, where the atmospheric conditions of clear sky. To study the impacts of temperature variations on solar performance, solar irradiance must be kept constant and vice versa. Therefore, to have a temperature range and for more accuracy, the measurements were done for the tested module with five solar radiation levels: 200, 400, 600, 800, and 1000 W/m2. The optimum conditions that it have the best performance are achieved when the solar module works at a low ambient temperature. The highest power at solar radiation 1000W/m² was 446.2 mW and at module temperature 43 C°, while the minimum corresponding 64 mW at solar radiation 200W/m2 and module temperature of 43.6 C°. The highest open voltage equals 10.80 V, and at a module temperature of 43 C°, and maximum short current 77 mA at solar irradiance 1000W/m2 and module temperature 58 C°. The best value of fill factor was achieved 0.661 at solar irradiance 200 W/m2 and module temperature 43.6 C°. While the best efficiency value 8.9 % at solar radiation 1000 W/m2, and module temperature 43 C°.
Article Details
Section
How to Cite
References
Abdulhadi, Z.A., Hashim, E.T., and Tolephih, M.H., 2025. Investigation of some key factors impacting floating photovoltaic solar system performance on major Iraq water bodies. Journal of Engineering, 31(3), pp. 63-80. https://doi.org/10.31026/j.eng.2025.03.04
Assadi, M.K., Bakhoda, S., Saidur, R,. and Hanaei, H., 2018. Recent progress in perovskite solar cells. Renewable and Sustainable Energy Reviews, 81, pp. 2812-2822. https://doi.org/10.1016/j.rser.2017.06.088
Chatzisideris, M.D., Espinosa, N., Laurent, A., and Krebs, F.C., 2016. Ecodesign perspectives of thin-film photovoltaic technologies: A review of life cycle assessment studies. Solar Energy Materials and Solar Cells, 156, pp. 2-10. https://doi.org/10.1016/j.solmat.2016.05.048
Cheng, P., and Zhan, X., 2016. Stability of organic solar cells: Challenges and strategies. Chemical Society Reviews, 45(9), pp. 2544-2582. https://doi.org/10.1039/C5CS00593K
Cui, J., Meng, F., Zhang, H., Cao, K., Yuan, H., Cheng, Y., Huang, F., and Wang, M., 2014. CH3NH3PbI3-based planar solar cells with magnetron-sputtered nickel oxide. ACS applied materials and interfaces, 6(24), pp. 22862-22870. https://doi.org/10.1021/am507108u
Faisal, S.S., and Hashim, E.T., 2025. An approach to solar photovoltaic systems simulation utilizing builder block: a case study of a 100 MW system. Journal of Engineering, 31(1), pp. 98-119. https://doi.org/10.31026/j.eng.2025.01.06
Farhadi, B., Ciprian, M., Zabihi, F., and Liu, A., 2021. Influence of contact electrode and light power on the efficiency of tandem perovskite solar cell: Numerical simulation. Solar Energy, 226, pp. 161-172. https://doi.org/10.1016/j.solener.2021.08.043
Hahsim, E.T., 2016. Determination of mono-crystalline Silicon photovoltaic module parameters using three different methods. Journal of Engineering, 22(7), pp. 92-107. https://doi.org/10.31026/j.eng.2016.07.06
Hashim, E.T., and Hussien, S.A.M., 2018. Synchronous buck converter with perturb and observe maximum power point tracking implemented on a low-cost arduino-microcontroller. Journal of Engineering, 24(2), pp. 16-33. https://doi.org/10.31026/j.eng.2018.02.02.
Hashim, E.T., and Talib, Z. R. 2018 a. Study of the performance of the five-parameter model for a monocrystalline silicon photovoltaic module using reference data. FME Transactions, 46, pp. 585-594. https://doi.org/10.5937/fmet1804585T
Hashim, E. T., and Talib, Z. R., 2018 b. Modeling and simulation of solar module performance using the parameters model by using Matlab in Baghdad city. Journal of Engineering, 24(10), pp. 15-31. https://doi.org/10.31026/j.eng.2018.10.02.
Hashim, E.T., and Abbood, A.A., 2016. Temperature effect on power drop of different photovoltaic modules. Journal of Engineering, 22(5), pp. 129-143. https://doi.org/10.31026/j.eng.2016.05.09
Haider, M., and Yang, J.L., 2020. Efficient and stable perovskite–silicon two-terminal tandem solar cells. Rare Metals, 39(7), pp. 745-747. https://doi.org/10.1007/s12598-020-01430-4
Hossain, M.K., Toki, G.I., Samajdar, D.P., Mushtaq, M., Rubel, M.H.K., Pandey, R., Madan, J., Mohammed, M.K., Islam, M.R., Rahman, M.F., and Bencherif, H., 2023. Deep insights into the coupled optoelectronic and photovoltaic analysis of lead-free CsSnI3 perovskite-based solar cell using DFT calculations and SCAPS-1D simulations. ACS Omega, 8(25), pp. 22466-22485.
Huang, Z., Xu, W., and Yu, K., 2015. Bidirectional LSTM-CRF models for sequence tagging. arXiv preprint arXiv:1508.01991. https://doi.org/10.48550/arXiv.1508.01991
Ito, N., Kamarudin, M.A., Hirotani, D., Zhang, Y., Shen, Q., Ogomi, Y., Iikubo, S., Minemoto, T., Yoshino, K., and Hayase, S., 2018. Mixed Sn–Ge perovskite for enhanced perovskite solar cell performance in air. The Journal Of Physical Chemistry Letters, 9(7), pp. 1682-1688. https://doi.org/10.1021/acs.jpclett.8b00275
Kadia, N.J., Hashim E. T., and Abdullah, I. B., 2022. Performance of different photovoltaic technologies for amorphous Silicon (A-Si) and Copper Indium Gallium Di-Selenide (CIGS) Photovoltaic Modules. Journal of Engineering and Sustainable Development, 26(1), pp. 95-105.
Katee, N.S., Abdullah, O.I., and Hashim, E.T. 2021. Extracting four solar model electrical parameters of mono-crystalline silicon (mc-Si) and thin film (CIGS) solar modules using different methods. Journal of Engineering, 27(4), pp. 16-32. https://doi.org/10.31026/j.eng.2021.04.02
Khattak, Y.H., Baig, F., Ullah, S., Mari, B., Beg, S. and Ullah, H., 2018. Numerical modeling baseline for high efficiency (Cu2FeSnS4) CFTS based thin film kesterite solar cell. Optik, 164, pp. 547-555.
Kojima, A., Teshima, K., Miyasaka, T., and Shirai, Y., 2006, June. Novel photoelectrochemical cell with mesoscopic electrodes sensitized by lead-halide compounds (2). In ECS Meeting Abstracts, 7, P. 397. IOP Publishing.
Kojima, A., Teshima, K., Shirai, Y., and Miyasaka, T. 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. Journal of the American Chemical Society, 131(17), pp. 6050-6051. https://doi.org/10.1021/ja809598r
Kosyachenko, L.A., Mathew, X., Paulson, P.D., Lytvynenko, V.Y., and Maslyanchuk, O.L., 2014. Optical and recombination losses in thin-film Cu (In, Ga) Se2 solar cells. Solar Energy Materials And Solar Cells, 130, pp. 291-302. https://doi.org/10.1016/j.solmat.2014.07.019
Kung, J.T., Kesner, B., An, J.Y., Ahn, J.Y., Cifuentes-Rojas, C., Colognori, D., Jeon, Y., Szanto, A., del Rosario, B.C., Pinter, S.F., and Erwin, J.A., 2015. Locus-specific targeting to the X chromosome revealed by the RNA interactome of CTCF. Molecular Cell, 57(2), pp. 361-375.
Lekesi, L.P., Koao, L.F., Motloung, S.V., Motaung, T.E., and Malevu, T., 2022. Developments on perovskite solar cells (PSCs): A critical review. Applied Sciences, 12(2), P. 672. https://doi.org/10.3390/app12020672
Minemoto, T., Kawano, Y., Nishimura, T., Shen, Q., Yoshino, K., Iikubo, S., Hayase, S., and Chantana, J., 2020. Theoretical analysis of band alignment at back junction in Sn–Ge perovskite solar cells with inverted pin structure. Solar Energy Materials and Solar Cells, 206, P. 110268. https://doi.org/10.1016/j.solmat.2019.110268
Mohammed, S.A., and Hashim, E.T., 2019. Designing a maximum power point tracking system for a monocrystalline silicon solar module using the arduino microcontroller and synchronous buck converter. FME Transactions, 47, pp. 524-533. http://doi.org/10.5937/fmet1903524M
Rahul, Abhishek, K., Datta, S., Biswal, B.B., and Mahapatra, S.S. 2017. Machining performance optimization for electro-discharge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, fuzzy inference system, and Taguchi approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, pp. 3499-3527. https://doi.org/10.1007/s40430-016-0659-7
Ren, G., Han, W., Deng, Y., Wu, W., Li, Z., Guo, J., and Guo, W. 2021. Strategies of modifying spiro-OMeTAD materials for perovskite solar cells: a review. Journal of Materials Chemistry A, 9(8), pp. 4589-4625.
Sabbah, H., and Baki, Z. A. 2023. Device simulation of highly stable and 29% efficient FA 0.75 MA 0.25 Sn 0.95 Ge 0.05 I 3-based perovskite solar cell. Nanomaterials, 13(9), P. 1537. http://doi.org/10.3390/nano13091537
Shao, Y., Zheng, D., Liu, L., Liu, J., Du, M., Peng, L., and Liu, S. 2024. Innovations in interconnecting layers for perovskite-based tandem solar cells. ACS Energy Letters, 9(10), pp. 4892-4921. https://doi.org/10.7498/aps.73.20241187
Szabó, G., Park, N.G., De Angelis, F., and Kamat, P. V. 2023. Are perovskite solar cells reaching the efficiency and voltage limits?. ACS Energy Letters, 8(9), pp. 3829-3831.
Ullah H., Marí, B., Cui, H.N., 2013, Investigation on the effect of gallium on the efficiency of CIGS solar cells through dedicated software, Appl. Mech. Mater. 448–453, pp. 1497–1501. http://doi.org/10.4028/www.scientific.net/AMM.448-453.1497
Wang, W., Arora, R., Livescu, K., and Bilmes, J. 2015, June. On deep multi-view representation learning. In International Conference on machine learning (pp. 1083-1092). PMLR.
Xu, X., Zhao, Y., Sima, J., Zhao, L., Mašek, O., and Cao, X. 2017. Indispensable role of biochar-inherent mineral constituents in its environmental applications: A review. Bioresource Technology, 241, pp. 887-899. https://doi.org/10.1016/j.biortech.2017.06.023
Yusuf, A.S., Ramalan, A.M., Abubakar, A.A., and Mohammed, I.K. 2024. Effect of electron transport layers, interface defect density, and working temperature on perovskite solar cells using SCAPS 1-D Software. East European Journal of Physics, (1), pp. 332-341. https://doi.org/10.26565/2312-4334-2024-1-31