Theoretical and Experimental Investigation of an Acetone-Filled Pulsating Heat Pipe Heat Exchanger for Waste Heat Recovery
Main Article Content
Abstract
In this work, a vertical pulsating heat pipe heat exchanger (PHPHE) was designed for waste heat recovery, exchanging thermal energy between two air streams in a counterflow configuration. The heat exchanger consists of six rows, each row consists of one pulsating heat pipe (PHP), and each PHP has six turns. The working fluid used in the heat pipe was acetone with fill ratios of 50%, 60%, and 70%. The effect of evaporator inlet temperature at 40, 45, and 50°C and air velocity at 0.5, 0.7, and 0.9 m/s on the pulsating heat pipes consisting of three sections- evaporator, condenser, and adiabatic, whose dimensions were 25 x 25 x 10 cm, was studied. At the same time, the condenser temperature was maintained at 26°C. The system’s thermal resistance, effectiveness, and heat transfer were calculated using Engineering Equation Solver (EES) software. Results showed that the device's efficiency ranged from approximately 15% to 32%. The device performed better at a 50% fill ratio compared to other ratios, achieving high efficiency at low speeds.
Article Details
Section
How to Cite
References
Akachi, H. 1993. Structure of micro-heat pipe. Washington, DC: U.S.
Babu, E., Reddappa, H., Reddy, G.G., 2018. Effect of filling ratio on thermal performance of closed loop pulsating heat pipe. Materials Today: Proceedings, 5(10), pp. 22229-22236. https://doi.org/10.1016/j.matpr.2018.06.588.
Bastakoti, D., Zhang, H., Li, D., Cai, W., Li, F., 2018. An overview on the developing trend of pulsating heat pipe and its performance. Applied Thermal Engineering, 141, pp. 305-332. http://dx.doi.org/10.1016/j.applthermaleng.2018.05.121.
Bhramara, P., 2018. CFD analysis of copper closed loop pulsating heat pipe. Materials Today: Proceedings, 5(2), pp. 5487-5495. https://doi.org/10.1016/j.matpr.2017.12.138.
Borkar, R., Pachghare, P., 2015. Effect of working fluid, filling ratio and number of turns on pulsating heat pipe thermal performance. Frontiers in Heat Pipes (FHP), 6(1). http://dx.doi.org/10.5098/fhp.6.4.
Chaudhry, H.N., Hughes, B.R., Ghani, S.A., 2012. A review of heat pipe systems for heat recovery and renewable energy applications. Renewable and Sustainable Energy Reviews, 16(4), pp. 2249-2259. https://doi.org/10.1016/j.rser.2012.01.038.
Cheng, P.-S., Wong, S.-C., 2024. Detailed visualization experiments on the start-up process and stable operation of pulsating heat pipes: Effects of internal diameter. International Journal of Heat and Fluid Flow, 106, P. 109325. https://doi.org/10.1016/j.ijheatfluidflow.2024.109325.
Chien, K.-H., Lin, Y.-T., Chen, Y.-R., Yang, K.-S., Wang, C.-C., 2012. A novel design of pulsating heat pipe with fewer turns applicable to all orientations. International Journal of Heat and Mass Transfer, 55(21-22), pp. 5722-5728. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.05.068.
Babu, E.R. and Reddy, G.G., 2016. Effect of working fluid and filling ratio on performance of a closed loop pulsating heat pipe. Journal of Engineering Science and Technology, 11(6), pp. 872-880.
Famouri, M., Carbajal, G., Li, C., 2014. Transient analysis of heat transfer and fluid flow in a polymer-based micro flat heat pipe with hybrid wicks. International Journal of Heat and Mass Transfer, 70, pp. 545-555. https://doi.org/10.1016/j.ijheatmasstransfer.2013.11.019.
Jo, J., Kim, J., Kim, S.J., 2019. Experimental investigations of heat transfer mechanisms of a pulsating heat pipe. Energy conversion and management, 181, pp. 331-341. http://dx.doi.org/10.1016/j.enconman.2018.12.027.
Kammuang-Lue, N., Sakulchangsatjatai, P., Sriwiset, C., Terdtoon, P., 2018. Investigation and predictation of optimum meandering turn number of vertical and horizontal closed-loop pulsating heat pipes. Thermal Science, 22(1 Part A), pp. 273-284. https://doi.org/10.2298/TSCI150707161K.
Kammuang-lue, N., Sakulchangsatjatai, P., Terdtoon, P., 2022. Thermal performance of various adiabatic section lengths of closed-loop pulsating heat pipe designed for energy recovery applications. Energy Reports, 8, pp. 731-737. https://doi.org/10.1016/j.egyr.2022.10.149.
Karthikeyan, V., Ramachandran, K., Pillai, B., Solomon, A.B., 2013. Effect of number of turns on the temperature pulsations and corresponding thermal performance of pulsating heat pipe. Journal of Enhanced Heat Transfer, 20(5). https://doi.org/10.1615/JEnhHeatTransf.2014010509.
Kearney, D.J., Suleman, O., Griffin, J., Mavrakis, G., 2016. Thermal performance of a PCB embedded pulsating heat pipe for power electronics applications. Applied Thermal Engineering, 98, pp. 798-809. http://dx.doi.org/10.1016/j.applthermaleng.2015.11.123
Kim, J., Kim, S.J., 2018. Experimental investigation on the effect of the condenser length on the thermal performance of a micro pulsating heat pipe. Applied Thermal Engineering, 130, pp. 439-448. https://doi.org/10.1016/j.applthermaleng.2017.11.009.
Liu, X., Chen, Y., Shi, M., 2013. Dynamic performance analysis on start-up of closed-loop pulsating heat pipes (CLPHPs). International Journal of Thermal Sciences, 65, pp. 224-233. https://doi.org/10.1016/j.ijthermalsci.2012.10.012.
Mameli, M., Marengo, M., Zinna, S., 2012. Numerical model of a multi-turn closed loop pulsating heat pipe: effects of the local pressure losses due to meanderings. International Journal of Heat and Mass Transfer, 55(4), pp. 1036-1047. https://doi.org/10.1016/j.ijheatmasstransfer.2011.10.006.
Nekrashevych, I., Nikolayev, V.S., 2019. Pulsating heat pipe simulations: impact of PHP orientation. Microgravity Science and Technology, 31(3), pp. 241-248. https://doi.org/10.1007/s12217-019-9684-3.
Omar, A., Saghafifar, M., Mohammadi, K., Alashkar, A., Gadalla, M., 2019. A review of unconventional bottoming cycles for waste heat recovery: Part II–Applications. Energy conversion and management, 180, pp. 559-583. https://doi.org/10.1016/j.enconman.2018.10.088.
Patel, E.D., Kumar, S., 2022. The impact of variation in filling ratios, evacuation pressure, and heat input on thermal performance of pulsating heat pipe. IEEE Transactions on Components, Packaging and Manufacturing Technology, 12, pp. 259-269. https://doi.org/10.1109/TCPMT.2021.3139727.
Riehl, R.R., dos Santos, N., 2012. Water-copper nanofluid application in an open loop pulsating heat pipe. Applied Thermal Engineering, 42, pp. 6-10. https://doi.org/10.1016/j.applthermaleng.2011.01.017.
Rudresha, S., Babu, E., Thejaraju, R., 2023. Experimental investigation and influence of filling ratio on heat transfer performance of a pulsating heat pipe. Thermal Science and Engineering Progress, 38, P. 101649. https://doi.org/10.1016/j.tsep.2023.101649.
Saghafifar, M., Omar, A., Mohammadi, K., Alashkar, A., Gadalla, M., 2019. A review of unconventional bottoming cycles for waste heat recovery: Part I–Analysis, design, and optimization. Energy conversion and management, 198, P. 110905. https://doi.org/10.1016/j.enconman.2018.10.047.
Shi, W., Li, M., Chen, H., Pan, L., 2024. Effect of evaporating-condensing length ratio and heat flux on starting and operating characteristic of pulsating heat pipe. Applied Thermal Engineering, 246, P. 122963. https://doi.org/10.1016/j.applthermaleng.2024.122963.
Taft, B.S., Williams, A.D., Drolen, B.L., 2012. Review of pulsating heat pipe working fluid selection. Journal of Thermophysics and Heat Transfer, 26(4), pp. 651-656. https://doi.org/10.2514/1.T3768.
Tseng, C.-Y., Wu, H.-M., Wong, S.-C., Yang, K.-S., Wang, C.-C., 2018. A novel thermal module with 3-D configuration pulsating heat pipe for high-flux applications. Energies, 11(12), P. 3425. http://dx.doi.org/10.3390/en11123425.
Tseng, C.-Y., Yang, K.-S., Chien, K.-H., Jeng, M.-S., Wang, C.-C., 2014. Investigation of the performance of pulsating heat pipe subject to uniform/alternating tube diameters. Experimental thermal and fluid science, 54, pp. 85-92. https://doi.org/10.1016/j.expthermflusci.2014.01.019.
Vakiloroaya, V., Samali, B., Fakhar, A., Pishghadam, K., 2014. A review of different strategies for HVAC energy saving. Energy conversion and management, 77, pp. 738-754. https://doi.org/10.1016/j.enconman.2013.10.023.
Wang, J., Ma, H., Zhu, Q., 2015. Effects of the evaporator and condenser length on the performance of pulsating heat pipes. Applied Thermal Engineering, 91, pp. 1018-1025. https://doi.org/10.1016/j.applthermaleng.2015.08.106
Wang, Q., Rao, Z., Huo, Y., Wang, S., 2016. Thermal performance of phase change material/oscillating heat pipe-based battery thermal management system. International Journal of Thermal Sciences, 102, pp. 9-16. https://doi.org/10.1016/j.ijthermalsci.2015.11.005.
Winkler, M., Rapp, D., Mahlke, A., Zunftmeister, F., Vergez, M., Wischerhoff, E., Clade, J., Bartholomé, K., Schäfer-Welsen, O., 2020. Small-sized pulsating heat pipes/oscillating heat pipes with low thermal resistance and high heat transport capability. Energies, 13(7), P. 1736. http://dx.doi.org/10.3390/en13071736.
Xu, R., Li, X., Lei, T., Wu, Q., Wang, R., 2022. Operation characteristics of a gravity pulsating heat pipe under different heat inputs. International Journal of Heat and Mass Transfer, 189, P. 122731. https://doi.org/10.1016/j.ijheatmasstransfer.2022.122731.
Yang, H., Wang, J., Wang, N., Yang, F., 2019. Experimental study on a pulsating heat pipe heat exchanger for energy saving in air-conditioning system in summer. Energy and Buildings, 197, pp. 1-6. https://doi.org/10.1016/j.enbuild.2019.05.032.
Yang, K.-S., Jiang, M.-Y., Tseng, C.-Y., Wu, S.-K., Shyu, J.-C., 2020. Experimental Investigation on the Thermal Performance of Pulsating Heat Pipe Heat Exchangers. Energies, 13(1). https://doi.org/10.3390/en13010269.
Yang, K.-S., Wang, J.-S., Wu, S.-K., Tseng, C.-Y., Shyu, J.-C., 2017. Performance Evaluation of a Desiccant Dehumidifier with a Heat Recovery Unit. Energies, 10(12). https://doi.org/10.3390/en10122006.
Youn, Y.J., Kim, S.J., 2012. Fabrication and evaluation of a slicon-based micro pulsating heat spreader. Sensors and Actuators A: Physical, 174, pp. 189-197. https://doi.org/10.1016/j.sna.2011.12.006.
Zhan, J., Chen, X., Ji, Y., Zheng, P., Duan, W., 2023. Experimental study of ethane pulsating heat pipe with varying evaporator lengths based on pulse tube refrigerator. International Journal of Refrigeration, 145, pp. 40-49. https://doi.org/10.1016/j.ijrefrig.2022.09.010.