Quantum-Electrochemical Enhancement of Battery Interfaces Using Magic-Angle Twisted Bilayer Graphene
Main Article Content
Abstract
The combination of quantum materials into electrochemical systems provides a novel procedure in advanced energy storage technology. This study focused on the use of magic-angle twisted bilayer graphene (MATBG); a material known for its unconventional superconductivity and superfluid stiffness scaling at cryogenic temperatures suitable for enhancing battery interfaces under room temperature conditions. By exploiting the quantum capacitance of MATBG and incorporating it in an adapted Poisson-Nernst-Planck (PNP) theoretical framework, this study achieved substantial and remarkable improvements in interfacial energetics and charge-transfer kinetics. Explicitly, the modified PNP model showed a 50% reduction in interfacial potential gradients (from 8.2×10³ mol/m⁴ to 2.7×10³ mol/m⁴) and a 60% decrease in charge-transfer resistance (Rct), as confirmed by Nyquist plot analysis. Experimentally, MATBG-integrated battery cells display a threefold increase in exchange current density (j0) compared to normal or conventional cells, along with a substantial reduction in voltage hysteresis (0.07 V vs. 0.22 V in control systems) during cycling. These improvements are linked to the unique electronic characteristic of MATBG, which facilitates efficient redistribution of charges and eradicates kinetic problems at the electrode-electrolyte interface. These findings highlight and present the potential of MATBG as a high-performance quantum-electrochemical interface, which enables high-rate battery operation with improved energy stability and efficiency. This work bridges quantum material physics with practical electrochemistry and also opens a novel technique for designing next-generation energy storage systems that leverage quantum-engineered interfaces.
Downloads
Article Details
Section
How to Cite
References
Akash, G.S., Tanzeel, H., and Paramjyo, 2024. A mini review on two-dimensional (2D) materials for energy storage applications. E3S Conference, 10. https://doi.org/10.1051/e3sconf/202450903004
Banerjee, A., Hao, Z., Kreidel, M., Ledwith, P., Phinney, I., Park, J.M., Zimmerman, A.M., Wesson, M.E., Watanabe, K., Taniguchi, T., Westervelt, R.M., Yacoby, A., Jarillo-Herrero, P., Volkov, P.A., Vishwanath, A., Fong, K.C., and Kim, P., 2025. Superfluid stiffness of twisted multilayer graphene superconductors. Journal of Nature, pp. 93–98. https://doi.org/10.1038/s41586-024-08444-3
Bistritzer, R., and MacDonald, A.H., 2011. Moiré bands in twisted double-layer graphene. Proceedings of the National Academy of Sciences of the United States of America, 108(30), pp. 12233–12237. https://doi.org/10.1073/pnas.1108174108
Cao, Y., Fatemi, V., Demir, A., Fang, S., Tomarken, S.L., Luo, J.Y., Sanchez-Yamagishi, J.D., Watanabe, K., Taniguchi, T., Kaxiras, E., Ashoori, R.C., and Jarillo-Herrero, P., 2018. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Journal of Nature, 556, pp. 80–84. https://doi.org/10.1038/nature26154
Debnath, S., Dey, S., and Giri, P.K., 2025. Exploring moiré superlattices and memristive switching in non-van der Waals twisted bilayer Bi₂O₂Se. ACS Applied Materials & Interfaces, 17(5), pp. 8219–8230. https://doi.org/10.1021/acsami.4c14029
Du, Z.Z., Wang, H.Z., Lu, H.Z., and Xie, X.C., 2021. Quantum theory of the nonlinear Hall effect. Physical Review Letters, 126(3), 036602. https://doi.org/10.1103/PhysRevLett.126.036602
Fang, T., Konar, A., Xing, H., and Jena, D., 2007. Carrier statistics and quantum capacitance of graphene. Applied Physics Letters, 91, 092109. https://doi.org/10.1063/1.2776887
Ghosh, S., Behera, S.K., Mishra, A., Casari, C.S., and Ostrikov, K.K., 2023. Quantum capacitance of two-dimensional-material-based supercapacitor electrodes. Energy & Fuels, 37, pp. 17836–17862. https://doi.org/10.1021/acs.energyfuels.3c02714
Gogotsi, Y., and Simon, P., 2011. True performance metrics in electrochemical energy storage. Journal of Science, 334(6058), pp. 917–918. https://doi.org/10.1126/science.1213003
Hazra, D., Verma, G., and Randeria, M., 2019. Bounds on the superfluid stiffness for dirty superconductors. Physical Review X, 9, 031049. https://doi.org/10.1103/PhysRevX.9.031049
Julien, C.M., Mauger, A., Zaghib, K., and Groult, H., 2021. Advances in applications of graphene-based nanocomposites for energy devices. Journal of Crystals, 11(1), 47. https://doi.org/10.3390/cryst11010047
Koerver, R., Kloß, E., Schmidt, P.M., Leichtweiß, J., Clemens, A., Walter, T., Anselmann, J.J., Teplukhin, Y., Zeier, W.G., and Janek, J., 2017. Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly Li-ion-conductive Li₁₀GeP₂S₁₂. Journal of Materials Chemistry A, 5, pp. 22750–22760. https://doi.org/10.1039/C7TA04532D
Koshino, M., Yuan, F.Q., Koretsune, T., Ochi, M., Kuroki, K., and Fu, L., 2018. Maximally localized Wannier orbitals and the extended Hubbard model for twisted bilayer graphene. Physical Review X, 8(3), P. 031087. https://doi.org/10.1103/PhysRevX.8.031087
Kumar, R.K., Li, H., Zhu, Z., Zhang, Y., Zhou, T., Sun, X., Watanabe, K., Taniguchi, T., Law, K.T., and Wang, F., 2025. Terahertz photocurrent probe of quantum geometry and interactions in MATBG. Journal of Nature Materials, 24, pp. 1034–1041. https://doi.org/10.1038/s41563-025-02260-1
Lau, C.N., Bockrath, M.W., Mak, K.F., and Zhang, F., 2022. Reproducibility in the fabrication and physics of moiré materials. Journal of Nature, 602, pp. 41–50. https://doi.org/10.1038/s41586-021-04063-y
Lee, S., Wang, Y., Birkbeck, J., Mullan, C., Goodwin, Z., Rhodes, D., Hone, J., Dean, C.R., Efetov, D.K., and Fal’ko, V.I., 2025. Quasiparticle and superfluid dynamics in magic-angle graphene. Journal of Nature Communications, 16, pp. 345–351. https://doi.org/10.1038/s41467-025-61472-1
Lin, J., Yuan, Y., Wang, M., Yang, X., and Yang, G., 2023. Theoretical studies on the quantum capacitance of two-dimensional electrode materials for supercapacitors. Journal of Nanomaterials, 13(13), 1932. https://doi.org/10.3390/nano13131932
Liu, T., Zhang, Y., Jiang, L., Zeng, W., Huang, H., and Wang, J., 2021. Fast charging of lithium-ion batteries: A review. Journal of Transportation, 10, pp. 100–121. https://doi.org/10.1016/j.etran.2021.100121
Long, Y., Tao, Y., Lv, W., and Yang, Q.H., 2024. Making 2D materials sparkle in energy storage via assembly. Accounts of Chemical Research, 57, pp. 2689–2699. https://doi.org/10.1021/acs.accounts.4c00456
Lu, X., Kreidel, M., Jie, X., Wang, W., Hatridge, M., Klironomos, A.D., Stepanov, P., Efetov, D.K., Basov, D.N., and Yao, Y., 2024. Measuring kinetic inductance and superfluid stiffness of 2D van der Waals superconductors. Physical Review Research, 6, 043245. https://doi.org/10.1103/PhysRevResearch.6.043245
Naguib, M., Halim, J., Lu, J., Cook, K.M., Hultman, L., Gogotsi, Y., and Barsoum, M.W., 2024. MXene: A new revolution in the world of 2D materials. Electrochemical Society Interface, 33, pp. 41–48. https://doi.org/10.1149/2.F03241IF
Oliver, W.D., Tanaka, M., Wang, J.I.J., Dinh, T.H., Rodan-Legrain, D., Zaman, S., and Hays, M., 2025. Superfluid stiffness of magic-angle twisted bilayer graphene. Journal of Nature, pp. 99–105. https://doi.org/10.1038/s41586-024-08494-7
Po, H.C., Zou, L., Vishwanath, A., and Senthil, T., 2018. Origin of Mott insulating behavior and superconductivity in twisted bilayer graphene. Physical Review X, 8, 031089. https://doi.org/10.1103/PhysRevX.8.031089
Qin, M.L., Wu, S.Y., Guo, T.H., Wu, M.Q., Zhu, Q.S., and Kuang, M.Q., 2024. Quantum capacitance, structural optical and electronic properties of Zr₂CT₂ (T = F, P, Cl, Se, Br, O, S, OH) MXenes: A DFT study. Surface Interfaces, 104073. https://doi.org/10.1016/j.surfin.2024.104073
Saini, R., Naaz, F., Bashal, A.H., Pandit, A.H., and Farooq, U., 2024. Recent advances in nitrogen-doped graphene-based heterostructures and composites: Mechanism and active sites for electrochemical ORR and HER. Journal of Green Chemistry, 26(1), pp. 57–102. https://doi.org/10.1039/D3GC03012A
Şen, M., Özcan, M., and Eker, Y.R., 2024. A review on the lithium-ion battery problems used in electric vehicles. Next Sustainability, 2, 100036. https://doi.org/10.1016/j.nsus.2024.100036
Sharma, A., Mehta, V., Gupta, R.K., and Patel, S., 2023. Review on new-generation battery technologies: Trends and future prospects. Journal of Energies, 16(24), P. 5120. https://doi.org/10.3390/en16245120
Sharpe, E.J., Fox, A.W., Barnard, J., Finney, K., Watanabe, T., Taniguchi, M., Kastner, A., and Goldhaber-Gordon, D., 2019. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Journal of Science, 365(6453), pp. 605–608. https://doi.org/10.1126/science.aaw3780
Shiyuan, G., Jin-Jian, Z., Yao, L., and Marco, B., 2024. First-principles electron–phonon interactions and electronic transport in large-angle twisted bilayer graphene. Physical Review Materials, 8(2), 024004. https://doi.org/10.1103/PhysRevMaterials.8.L051001
Singh, P., Kumar, R., and Sharma, N., 2022. Quantum capacitance perspectives and measurement strategies. Journal of Electrochemical Energy Conversion and Storage, 19(4), 041014. https://doi.org/10.1115/1.4054201
Tanaka, M., Wang, J., Dinh, T.H., Rodan-Legrain, D., Zaman, S., Hays, M., Kannan, B., Almanakly, A., Kim, D.K., Niedzielski, B.M., Serniak, K., Schwartz, M.E., Watanabe, K., Taniguchi, T., Grover, J.A., Orlando, T.P., Gustavsson, S., Jarillo-Herrero, P., and Oliver, W.D., 2025. Kinetic inductance, quantum geometry, and superconductivity in magic-angle twisted bilayer graphene. Journal of Nature, pp. 99–105. https://doi.org/10.1038/s41586-025-08588-4
Tarascon, J.M., and Armand, M., 2001. Issues and challenges facing rechargeable lithium batteries. Journal of Nature, 414, pp. 359–367. https://doi.org/10.1038/35104644
Tomarken, S.L., Cao, Y., Demir, A., Watanabe, K., Taniguchi, T., Jarillo-Herrero, P., and Ashoori, R.C., 2019. Electronic compressibility of magic-angle graphene superlattices. Physical Review Letters, 123(4), 046601. https://doi.org/10.1103/PhysRevLett.123.046601
Tuck, P., Laumann, C.R., Balents, L., Fu, L., Vishwanath, A., and Fisher, M.P.A., 2020. Quantum geometry and stability of moiré flat-band ferromagnetism. Physical Review B, 102, 165118. https://doi.org/10.1103/PhysRevB.102.165118
Uri, A., Grover, S., Cao, Y., Crosse, J.A., Bagani, K., Rodan-Legrain, D., Myasoedov, Y., Watanabe, K., Taniguchi, T., Stern, A., Berg, E., Jarillo-Herrero, P., and Zeldov, E., 2020. Mapping twist-angle disorder and Landau levels in MATBG. Journal of Nature, 581, pp. 47–52. https://doi.org/10.1038/s41586-020-2102-7
Vattikuti, S.V.P., Chandrasekhar, B., Reddy, C.V., Reddy, P.A.K., Prasad, V.S., Rao, K.H., 2024. Recent advances and strategies in MXene-based electrodes for supercapacitors. Nanomaterials, 14, 62. https://doi.org/10.3390/nano14010062
Wagner, G., Hirschfeld, P.J., and Vafek, O., 2023. Euler-obstructed nematic nodal superconductivity in twisted bilayer graphene. Physical Review B, 107, L201106. https://doi.org/10.1103/PhysRevB.107.L201106
Wang, X., and Vafek, O., 2022. Theory of correlated Chern insulators in twisted bilayer graphene. Physical Review X, 14(2), 021042. https://doi.org/10.1103/PhysRevX.14.021042
Wang, Z., Li, C., Xu, D., Wang, J., Wang, S., and Wang, X., 2021. Flexible and multifunctional phase change composites featuring high-efficiency electromagnetic interference shielding and thermal management for electronic devices. Chemical Engineering Journal, 430, 132928. https://doi.org/10.1016/j.cej.2021.132928
Xia, J., Chen, F., Li, J., and Tao, N., 2009. Measurement of the quantum capacitance of graphene. Nature Nanotechnology, 4, 505–509. https://doi.org/10.1038/nnano.2009.177
Xie, M., and MacDonald, A.H., 2020. Nature of the correlated insulator states in twisted bilayer graphene. Physical Review Letters, 124(9), 097601. https://doi.org/10.1103/PhysRevLett.124.097601
Yankowitz, M., Chen, S., Polshyn, H., Zhang, Y., Watanabe, K., Taniguchi, T., Graf, D., Young, A.F., and Dean, C.R., 2019. Tuning superconductivity in twisted bilayer graphene. Science, 363(6431), pp. 1059–1064. https://doi.org/10.1126/science.aav1910
Yu, G.L., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Ribeiro, C.S., Novoselov, K.S., Guinea, F., Geim, A.K., and Castro Neto, A.H., 2013. Interaction phenomena in graphene seen through quantum capacitance. Proceedings of the National Academy of Sciences of the United States of America, 110, pp. 3282–3286. https://doi.org/10.1073/pnas.1218475110
Zhang, C., Wang, A., Zhang, J., Guan, X., Tang, W., Luo, J., and Wang, X., 2018. 2D materials for lithium/sodium metal anodes. Advanced Energy Materials, 8(34), 1802833. https://doi.org/10.1002/aenm.201802833
