Impact Response for Two Designs of Athletic Prosthetic Feet

Main Article Content

Mohsin N. Hamzah
Ammar S. Merza
Lamees Hussein Ali

Abstract

The present work evaluated the differences in mechanical properties of two athletic prosthetic feet samples when subjected to impact while running. Two feet samples designated as design A and B were manufactured using layers of different orientations of woven glass fiber reinforced with unsaturated polyester resin as bonding epoxy. The samples’ layers were fabricated with hand lay-up method. A theoretical study was carried out to calculate the mechanical properties of the composite material used in feet manufacturing, then experimental load-deflection  test was applied at 0 degree position and 25 degree dorsiflexion feet position  and impact test were applied for both feet designs to observe the behavior of the feet under static and impact loading and compare properties like stiffness, efficiency, rigidity, and shock absorption at different drop angles range from 25 degrees to 60 degrees which perform the foot positions while running. The load-deflection test result shows that the maximum deflection of the proposed design B was 32.2 mm at 0° and 38.45mm at 25°. While it was 41mm at 0˚ and 39mm at 25˚ for design A. Impact test result shows that design B foot gives peak load of 128 .7 kg with a peak time of 0.06 sec, while design Afoot gives 125.32 kg peak load with a time of 0.069 sec.


 

Article Details

Section

Articles

How to Cite

“Impact Response for Two Designs of Athletic Prosthetic Feet” (2018) Journal of Engineering, 24(3), pp. 13–28. doi:10.31026/j.eng.2018.03.02.

Similar Articles

You may also start an advanced similarity search for this article.

Most read articles by the same author(s)