Attitude and Altitude Control of Quadrotor Carrying a Suspended Payload using Genetic Algorithm

محتوى المقالة الرئيسي

Zulfiqar Salih
Muna Hadi Saleh

الملخص

The need for quick airborne transportation is critical, especially in emergencies. Drones with suspended payloads might be used to accomplish quick airborne transportation. Due to the environment or the drone's motion, the slung load may oscillate and lead the drone to fall. The altitude and attitude controls are the backbones of the drone's stability, and they must be adequately designed. Because of their symmetrical and simple structure, quadrotor helicopters are one of the most popular drone classes. In this work, a genetic algorithm with two weighted terms fitness function is used to adjust a Proportional-Integral-Derivative (PID) controller to compensate for the altitude and attitude controllers in a quadrotor drone with a slung load.

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"Attitude and Altitude Control of Quadrotor Carrying a Suspended Payload using Genetic Algorithm" (2022) مجلة الهندسة, 28(5), ص 25–40. doi:10.31026/j.eng.2022.05.03.

المراجع

• Abbas, Nizar Hadi, A.R.S., 2018. Tuning of PID Controllers for Quadcopter System using Cultural Exchange Imperialist Competitive Algorithm. Journal of Engineering, 24(2), pp.80–99.

• Alothman, Y., Jasim, W., and Gu, D., 2015. Quad-rotor lifting-transporting cable-suspended payloads control. 2015 21st International Conference on Automation and Computing: Automation, Computing and Manufacturing for New Economic Growth, ICAC 2015.

• Bangura, M., and Mahony, R., 2012. Nonlinear dynamic modeling for high performance control of a quadrotor. Australasian Conference on Robotics and Automation, ACRA, pp.3–5.

• Cruz, P.J., and Fierro, R., 2017. Cable-suspended load lifting by a quadrotor UAV: hybrid model, trajectory generation, and control. Autonomous Robots, 41(8), pp.1629–1643.

• Dai, S., Lee, T., and Bernstein, D.S., 2014. Adaptive Control of a Quadrotor UAV Transporting a Cable-Suspended Load with Unknown Mass. 1243000, pp.6149–6154.

• Faust, A., Palunko, I., Cruz, P., Fierro, R., and Tapia, L., 2017. Automated aerial suspended cargo delivery through reinforcement learning. Artificial Intelligence, [online] 247, pp.381–398. Available at: <http://dx.doi.org/10.1016/j.artint.2014.11.009>.

• Foehn, P., Falanga, D., Kuppuswamy, N., Tedrake, R., and Scaramuzza, D., 2017. Fast trajectory optimization for agile quadrotor maneuvers with a cable-suspended payload Publisher Robotics: Science and Systems Foundation Terms of Use Creative Commons Attribution-Noncommercial-Share Alike Fast Trajectory Optimization for Agile Quadrot. Robotics: Science and System, [online] 13(i). Available at: <http://creativecommons.org/licenses/by-nc-sa/4.0/>.

• Gaur, M., Chaudhary, H., Khatoon, S. and Singh, R., 2017. Genetic algorithm based trajectory stabilization of quadrotor. 2nd IEEE International Conference on Innovative Applications of Computational Intelligence on Power, Energy and Controls with their Impact on Humanity, CIPECH 2016, pp.29–33.

• Hashemi, D., and Heidari, H., 2020. Trajectory Planning of Quadrotor UAV with Maximum Payload and Minimum Oscillation of Suspended Load Using Optimal Control.

• Hoffmann, G.M., and Tomlin, C.J., 2010. Quadrotor_Dynamics_GNC07. (August 2007), pp.1–20.

• Housny, H., Chater, E.A., and Fadil, H. El, 2019. Fuzzy PID Control Tuning Design Using Particle Swarm Optimization Algorithm for a Quadrotor. 2019 International Conference on Optimization and Applications, ICOA 2019, pp.1–6.

• Jain, R.P.K., Keviczky, T., TU Delft: Mechanical, Maritime and Materials Engineering: Delft Center for Systems and Control and TU Delft, Delft University of Technology, 2015. Transportation of Cable Suspended Load using Unmanned Aerial Vehicles: A Real-time Model Predictive Control approach. [online] Available at: <http://resolver.tudelft.nl/uuid:4c6b4a94-4f15-4e67-8c30-eb8156aab406>.

• Jayachitra, A., and Vinodha, R., 2014. Genetic Algorithm Based PID Controller Tuning Approach for Continuous Stirred Tank Reactor. Advances in Artificial Intelligence, 2014, pp.1–8.

• Johnson, N.A., 2017. Control of a folding quadrotor with a slung load using input shaping. [online] (May). Available at: <https://smartech.gatech.edu/handle/1853/58246?show=full>.

• Khodja, M.A., Tadjine, M., Boucherit, M.S., and Benzaoui, M., 2017. Tuning PID attitude stabilization of a quadrotor using particle swarm optimization (experimental). International Journal for Simulation and Multidisciplinary Design Optimization, 8.

• Khuwaja, K., Lighari, N.-Z., Tarca, I.C., and Tarca, R.C., 2018. PID Controller Tuning Optimization with Genetic Algorithms for a Quadcopter. Recent Innovations in Mechatronics, 5(1.).

• Klausen, K., Fossen, T.I., Johansen, A., and Johansen, T.A., 2015. Nonlinear control of a multirotor UAV with suspended load. 2015 International Conference on Unmanned Aircraft Systems, ICUAS 2015, pp.176–184.

• Klausen, K., Fossen, T.I., and Johansen, T.A., 2017. Nonlinear Control with Swing Damping of a Multirotor UAV with Suspended Load. Journal of Intelligent and Robotic Systems: Theory and Applications, 88(2–4), pp.379–394.

• Kubba, H.A., and Esmieel, M.T., 2018. Journal of engineering physics. International Journal of Heat and Mass Transfer, 13(7), pp.1251–1260.

• Mirzal, A., Yoshii, S., and Furukawa, M., 2012. PID Parameters Optimization by Using Genetic Algorithm. [online] Available at: <http://arxiv.org/abs/1204.0885>.

• Mosco-Luciano, A., Castro-Linares, R., and Rodriguez-Cortes, H., 2020. Trajectory Tracking Control for a Quadrotor with a Slung Load. 2020 International Conference on Unmanned Aircraft Systems, ICUAS 2020, (March 2021), pp.322–328.

• Najm, A.A., and Ibraheem, I.K., 2019. Nonlinear PID controller design for a 6-DOF UAV quadrotor system. Engineering Science and Technology, an International Journal, 22(4), pp.1087–1097.

• Raptis, I.A., and Valavanis, K.P., 2010. Linear and Nonlinear Control of Small-Scale Unmanned Helicopters. Engineering, .

• Sakshi Bangia, R.T.S.J., 2021. Quadrotors in the Present Era: a Review. Information Technology in Industry, 9(1), pp.164–178.

• Sarghini, F., and De Vivo, A., 2017. Analysis of preliminary design requirements of a heavy lift multirotor drone for agricultural use. Chemical Engineering Transactions, 58, pp.625–630.

• Sumardi, Sulila, M.S., and Riyadi, M.A., 2017. Particle swarm optimization (PSO)-based self tuning proportional, integral, derivative (PID) for bearing navigation control system on quadcopter. Proceedings - 2017 4th International Conference on Information Technology, Computer, and Electrical Engineering, ICITACEE 2017, 2018-Janua(1), pp.181–186.

• Ünal, M., Erdal, H., and Topuz, V., 2012. Trajectory tracking performance comparison between genetic algorithm and ant colony optimization for PID controller tuning on pressure process. Computer Applications in Engineering Education, 20(3), pp.518–528.

• UNICEF, 2020. How Drones Can Be Used to Combat COVID-19. [online] pp.1–4. Available at: <https://www.unicef.org/supply/documents/how-drones-can-be-used-combat-covid-19>.

• Valavanis, K.P., and Vachtsevanos, G.J., 2015. Handbook of unmanned aerial vehicles. Handbook of Unmanned Aerial Vehicles, pp.1–3022.

• Walid, M., Slaheddine, N., Mohamed, A., and Lamjed, B., 2018. Modelling, identification and control of a quadrotor UAV. 2018 15th International Multi-Conference on Systems, Signals and Devices, SSD 2018, (October), pp.1017–1022.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.