Silica Fume Modified Cement-Based Mortar Exposed to High Temperatures: Residual Strengths and Microstructure

محتوى المقالة الرئيسي

Shahad Jafeer Albeer
Maan Salman Hassan

الملخص

Several previous investigations and studies utilized silica fume (SF) or (micro silica) particles as supplementary cementitious material added as a substitute to cement-based mortars and their effect on the overall properties, especially on physical properties, strength properties, and mechanical properties. This study investigated the impact of the inclusion of silica fume (SF) particles on the residual compressive strengths and microstructure properties of cement-based mortars exposed to severe conditions of elevated temperatures. The prepared specimens were tested and subjected to 25, 250, 450, 600, and 900 °C. Their residual compressive strengths and microstructure were evaluated and compared with control samples (CS) subjected to similar conditions (the same temperature category). The outcomes indicated that including silica fume particles in mortar mixtures lowered the amount and width of microcracks, upgraded the mass-loss performance, lowered crystalline calcium hydroxide, and reinforced the cement paste, which explained the improvement in residual mechanical strengths.

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"Silica Fume Modified Cement-Based Mortar Exposed to High Temperatures: Residual Strengths and Microstructure " (2023) مجلة الهندسة, 29(07), ص 18–33. doi:10.31026/j.eng.2023.07.02.

المراجع

ACI-318, 2014. Building Code Requirements for Structural Concrete (ACI 318-14) and Commentary.

Abayou, A., Yasien, A.M. and Bassuoni, M.T., 2019. Properties of nanosilica-modified concrete cast and cured under cyclic freezing/low temperatures. Advances in Civil Engineering Materials, 8(3), pp.287-306. Doi:10.1520/ACEM20190013.

Abdulkareem, R.T., Hassan, M.S. and Gorgis, I.N., 2016. Effect of steel fibers, polypropylene fibers and/or nanosilica on mechanical properties of self-consolidating concrete. Engineering and Technology Journal, 34(3 Part A), pp.527-538. Doi: 10.30684/etj.34.3A.8

Alani, S., Hassan, M.S., Jaber, A.A. and Ali, I.M., 2020. Effects of elevated temperatures on strength and microstructure of mortar containing nano-calcined montmorillonite clay. Construction and Building Materials, 263, p.120895.Doi:10.1016/j.conbuildmat.2020.120895.

Alani, S.S., Hassan, M.S. and Jaber, A.A., 2020, February. Residual strength and degradation of cement mortar containing polypropylene fibers at elevated temperature. In IOP Conference Series: Materials Science and Engineering (Vol. 737, No. 1, p. 012065). IOP Publishing. Doi:10.1088/1757-899X/737/1/012065.

ASTM C109, 2010. Standard Test Method for Compressive Strength of Hydraulic Cement Mortars, ASTM International.

ASTM C1437, 2020. Standard Test Method for Flow of Hydraulic Cement Mortar. ASTM International.

ASTM C305, 2011. Standard Practice for Mechanical Mixing of Hydraulic Cement Pastes and Mortars of Plastic Consistency. ASTM International.

Azimi-Pour, M., Eskandari-Naddaf, H., 2018. ANN and GEP prediction for simultaneous effect of nano and micro silica on the compressive and flexural strength of cement mortar. Construction and Building Materials, 189, pp.978–992. Doi:10.1016/j.conbuildmat.2018.09.031.

Bolhassani, M. and Samani, M., 2015. Effect of type, size, and dosage of nanosilica and microsilica on properties of cement paste and mortar. ACI Materials Journal, 112(2), pp.1-7.

Castellote, M., Alonso, C., Andrade, C., Turrillas, X. and Campo, J., 2004. Composition and microstructural changes of cement pastes upon heating, as studied by neutron diffraction. Cement and concrete research, 34(9), pp.1633-1644. Doi:10.1016/S0008-8846(03)00229-1.

Chen, B., Li, C. and Chen, L., 2009. Experimental study of mechanical properties of normal-strength concrete exposed to high temperatures at an early age. Fire Safety Journal, 44(7), pp.997-1002.Doi:10.1016/j.firesaf.2009.06.007.

Escalante-Garcia, J.I. and Sharp, J.H., 1998. Effect of temperature on the hydration of the main clinker phases in Portland cements: Part I, neat cements. Cement and concrete research, 28(9), pp.1245-1257. Doi: 10.1016/S0008-8846(98)00115-X

European Committee for Standardization, EN, 1992-1-2: design of concrete structures. Part 1-2: general rules—structural fire design, Brussels, Belgium.

Farzadnia, N., Ali, A.A.A. and Demirboga, R., 2013. Characterization of high strength mortars with nano alumina at elevated temperatures. Cement and Concrete Research, 54, pp.43-54. Doi:10.1016/j.cemconres.2013.08.003

Fridland, M. and Rosado, R., 2003. Mineral trioxide aggregate (MTA) solubility and porosity with different water-to-powder ratios. Journal of endodontics, 29(12), pp.814-817. Doi:10.1097/00004770-200312000-00007

Gesoğlu, M., Güneyisi, E. and Özbay, E., 2009. Properties of self-compacting concretes made with binary, ternary, and quaternary cementitious blends of fly ash, blast furnace slag, and silica fume. Construction and building materials, 23(5), pp.1847-1854. Doi:10.1016/j.conbuildmat.2008.09.015.

Güneyisi, E., Gesoğlu, M., Karaoğlu, S. and Mermerdaş, K., 2012. Strength, permeability and shrinkage cracking of silica fume and metakaolin concretes. Construction and Building Materials, 34, pp.120-130. Doi:10.1016/j.conbuildmat.2012.02.017

Garg, R., Garg, R., Bansal, M. and Aggarwal, Y., 2021. Experimental study on strength and microstructure of mortar in presence of micro and nano-silica. Materials Today: Proceedings, 43, pp.769-777. Doi:10.1016/j.matpr.2020.06.167.

Hassan, M.S., Gorgis, I. and Jaber, A., 2017. Fresh and hardened properties of nanosilica and microsilica contained self-consolidating concretes. ARPN J Eng Appl Sci, 12, pp.5140-5153.

Hassan, M.S., 2018. Moisture sensitivity and dimensional stability of carbonated fibre–cement composites. Advances in Cement Research, 30(9), pp.413-426. Doi:10.1680/jadcr.17.00141.

Ibrahim, T.H. and Allawi, A.A., 2023. The Response of Reinforced Concrete Composite Beams Reinforced with Pultruded GFRP to Repeated Loads. Journal of Engineering, 29(1), pp.158-174. Doi:10.31026/j.eng.2023.01.10.

Irshidat, M.R. and Al-Saleh, M.H., 2018. Thermal performance and fire resistance of nanoclay modified cementitious materials. Construction and Building Materials, 159, pp.213-219. Doi:10.1016/j.conbuildmat.2017.10.127.

Janca, M., Siler, P., Opravil, T. and Kotrla, J., 2019, July. Improving the dispersion of silica fume in cement pastes and mortars. In IOP Conference Series: Materials Science and Engineering (Vol. 583, No. 1, p. 012022). IOP Publishing.Doi:10.1088/1757-899X/583/1/012022.

Joint ACI/TMS Comm 216, 216.1-14, 2019. Code Requirements for Determining Fire Resistance of Concrete and Masonry Construction Assemblies. American Concrete Institute, Farmington Hills, MI.

Kattoof, I., Hassan, M.S. and Hasan, S.S., 2022. Effects of liquid nitrogen cooling on the microstructure properties of nano-modified concrete under hot conditions. Arabian Journal for Science and Engineering, 47(10), pp.12569-12583. Doi:10.1007/s13369-021-06496-5.

Khalid, M.Q. and Abbas, Z.K., 2023. Producing Sustainable Roller Compacted Concrete by Using Fine Recycled Concrete Aggregate. Journal of Engineering, 29(5), pp.126-145. Doi: 10.31026/j.eng.2023.05.10.

Khaloo, A.R., Vayghan, A.G. and Bolhassani, M., 2011. Mechanical and microstructural properties of cement paste incorporating nano silica particles with various specific surface areas. In Key Engineering Materials (Vol. 478, pp. 19-24). Trans Tech Publications Ltd. Doi:10.4028/www.scientific.net/KEM.478.19.

Khoury, G.A., 1992. Compressive strength of concrete at high temperatures: a reassessment. Magazine of concrete Research, 44(161), pp.291-309. Doi: 10.1680/macr.1992.44.161.291

Kim, K.Y., Yun, T.S. and Park, K.P., 2013. Evaluation of pore structures and cracking in cement paste exposed to elevated temperatures by X-ray computed tomography. Cement and Concrete Research, 50, pp.34-40. Doi:10.1016/j.cemconres.2013.03.020

Kjellsen, K.O., Monsøy, A., Isachsen, K. and Detwiler, R.J., 2003. Preparation of flat-polished specimens for SEM-backscattered electron imaging and X-ray microanalysis—importance of epoxy impregnation. Cement and concrete research, 33(4), pp.611-616. Doi:10.1016/S0008-8846(02)01029-3.

Knapen, E. and Van Gemert, D., 2009. Cement hydration and microstructure formation in the presence of water-soluble polymers. Cement and concrete Research, 39(1), pp.6-13. Doi:10.1016/j.cemconres.2008.10.003

Kodur, V., 2014. Properties of concrete at elevated temperatures. International Scholarly Research Notices. Doi:10.1155/2014/468510.

Lea, F.C., 1922. The resistance to fire of concrete and reinforced concrete. Journal of the Society of Chemical Industry, 41(18), pp.395R-396R. Doi:10.1002/jctb.5000411814.

Lea, F.C., 1920. The effect of temperature on some of the properties of materials. Engineering, 110(3), pp.293-298.

Li, Y., Tan, K.H. and Yang, E.H., 2019. Synergistic effects of hybrid polypropylene and steel fibers on explosive spalling prevention of ultra-high performance concrete at elevated temperature. Cement and Concrete Composites, 96, pp.174-181. Doi:10.1016/j.cemconcomp.2018.11.009.

Li, L.G., Huang, Z.H., Zhu, J., Kwan, A.K.H. and Chen, H.Y., 2017. Synergistic effects of micro-silica and nano-silica on strength and microstructure of mortar. Construction and Building Materials, 140, pp.229-238. Doi: 10.1016/j.conbuildmat.2017.02.115

Mardani-Aghabaglou, A., Sezer, G.İ. and Ramyar, K., 2014. Comparison of fly ash, silica fume and metakaolin from mechanical properties and durability performance of mortar mixtures view point. Construction and Building Materials, 70, pp.17-25. Doi: 10.1016/j.conbuildmat.2014.07.089

Mehta, P.K. and Monteiro, P.J., 2014. Concrete: microstructure, properties, and materials. McGraw-Hill Education.

Menéndez, E., Andrade, C. and Vega, L., 2012. Study of dehydration and rehydration processes of portlandite in mature and young cement pastes. Journal of thermal analysis and calorimetry, 110(1), pp.443-450. Doi: 10.1007/s10973-011-2167-4

Moghadam, M.A., Izadifard, R.A., 2020. Effects of zeolite and silica fume substitution on the microstructure and mechanical properties of mortar at high temperatures, construction and building materials. 253, p.119206. Doi:10.1016/j.conbuildmat.2020.119206

Mohammed, Z.M., Abdulhameed, A.A. and Kazim, H.K., 2022. Effect of Alkali-Activated Natural Pozzolan on Mechanical Properties of Geopolymer Concrete. Civil and Environmental Engineering, 18(1), pp.312-320. Doi: 10.2478/cee-2022-0029.

Morsy, M.S., Al-Salloum, Y.A., Abbas, H. and Alsayed, S.H., 2012. Behavior of blended cement mortars containing nano-metakaolin at elevated temperatures. Construction and Building materials, 35, pp.900-905. Doi:10.1016/j.conbuildmat.2012.04.099.

Neville, A. M., 1995. Properties of Concrete, fourth ed., English Language Book Society and Pitman, London.

Orchard, D. F., 1997. The properties of cement and concrete. Concr. Technol. 1, 317–328.

Seleem, H.E.H., Rashad, A.M. and Elsokary, T., 2011. Effect of elevated temperature on physico-mechanical properties of blended cement concrete. Construction and building Materials, 25(2), pp.1009-1017. Doi:10.1016/j.conbuildmat.2010.06.078.

Sharma, U., Khatri, A. Kanoungo, A., 2014. Use of Micro-silica as Additive to Concrete-state of Art, International Journal of Civil Engineering Research. 5 (1), pp. 9-12.

Swamy, R. N., 1986. Cement replacement materials: Surrey University Press, Surrey.

Taylor H.F.W., 1964. The Chemistry of Cements: vol. I, Academic Press, London.

Temiz, H. and Karakeci, A.Y., 2002. An investigation on microstructure of cement paste containing fly ash and silica fume. Cement and Concrete Research, 32(7), pp.1131-1132. Doi: 10.1016/S0008-8846(02)00749-4

Wu, Z., Shi, C. and Khayat, K.H., 2016. Influence of silica fume content on microstructure development and bond to steel fiber in ultra-high strength cement-based materials (UHSC). Cement and Concrete Composites, 71, pp.97-109. Doi:10.1016/j.cemconcomp.2016.05.005.

Mohammed, Z.M., Abdulhameed, A.A. and Kazim, H.K., 2022. Effect of Alkali-Activated Natural Pozzolan on Mechanical Properties of Geopolymer Concrete. Civil and Environmental Engineering, 18(1), pp.312-320. Doi: 10.2478/cee-2022-0029.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.