Microgrid Integration Based on Deep Learning NARMA-L2 Controller for Maximum Power Point Tracking
محتوى المقالة الرئيسي
الملخص
This paper presents a hybrid energy resources (HER) system consisting of solar PV, storage, and utility grid. It is a challenge in real time to extract maximum power point (MPP) from the PV solar under variations of the irradiance strength. This work addresses challenges in identifying global MPP, dynamic algorithm behavior, tracking speed, adaptability to changing conditions, and accuracy. Shallow Neural Networks using the deep learning NARMA-L2 controller have been proposed. It is modeled to predict the reference voltage under different irradiance. The dynamic PV solar and nonlinearity have been trained to track the maximum power drawn from the PV solar systems in real time.
Moreover, the proposed controller is tested under static and dynamic load conditions. The simulation and models are done by using MATLAB/Simulink. The simulation results from the proposed NARMA-L2 controller have been compared with existing Perturb and observe PO-MPPT and Incremental Conductance INC -MPPT methods.
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Abdul Hussain, A.M., and Habbi, H.M.D., 2018. Maximum power point tracking photovoltaic fed pumping system based on PI controller, in 2018 Third Scientific Conference of Electrical Engineering (SCEE). IEEE Access, pp. 78–83. Doi:10.1109/SCEE.2018.8684120
Ahmed, M., Harbi, I., Kennel, R., Rodriguez, J., and Abdelrahem, M., 2022. Model-based maximum power point tracking algorithm with constant power generation capability and fast DC-Link dynamics for two-stage PV systems. IEEE Access, 10, pp. 48551–48568. Doi:10.1109/ACCESS.2022.3172292
Alcaide, A.M., Gomez-Merchan, R., Zafra, E., Martin, E.P., Rodriguez, J.Ml., Leon, J.I., Vazquez, S., and Franquelo, L.G., 2022. The Influence of MPPT Algorithms in the Lifespan of the Capacitor Across the PV Array. IEEE Access 10, pp. 40945–40952. Doi:10.1109/ACCESS.2022.3164411
Asadi, Y., Eskandari, M., Mansouri, M., Moradi, M.H., and Savkin, A.V., 2023. A universal model for power converters of battery energy storage systems utilizing the impedance-shaping concepts. International Journal of Electrical Power & Energy Systems, 149, P. 109055. Doi:10.1016/j.ijepes.2023.109055
Awan, M.M.A., Javed, M.Y., Asghar, A.B., and Ejsmont, K., 2022. Performance optimization of a ten check MPPT algorithm for an off-grid solar photovoltaic system. Energies, 15(6), P. 2104. Doi:10.3390/en15062104
Azeem, F., Ahmad, A., Gondal, T.M., Arshad, J., Rehman, A.U., Eldin, E.M.T., Shafiq, M., and Hamam, H., 2022. Load management and optimal sizing of special-purpose microgrids using two stage PSO-fuzzy based hybrid approach. Energies, 15(17), P. 6465. Doi:10.3390/en15176465
Burlacu, M., and Navrapescu, V., 2022. Performance analysis of metaheuristic algorithms for optimal reactive power control in microgrids, in EPE 2022 - Proceedings of the 2022 12th International Conference and Exposition on Electrical and Power Engineering. Institute of Electrical and Electronics Engineers Inc., pp. 511–515. Doi:10.1109/EPE56121.2022.9959843
Chauhan, S., and Singh, B., 2022. Control of Solar PV Arrays Based Microgrid Intertied to a 3-Phase 4-Wire Distribution Network. IEEE Trans Ind Appl 58, pp. 5365–5382. Doi:10.1109/TIA.2022.3171529
Chen, C., Wang, Y., Cui, M., Zhao, J., Bi, W., Chen, Y., and Zhang, X., 2022. Data-driven detection of stealthy false data injection attack against power system state estimation. IEEE Trans Industr Inform, 18, pp. 8467–8476. Doi:10.1109/TII.2022.3149106
Dagal, I., Akın, B., and Akboy, E., 2022. MPPT mechanism based on novel hybrid particle swarm optimization and salp swarm optimization algorithm for battery charging through simulink. Scientific reports, 12(1), P.2664. Doi:10.1038/s41598-022-06609-6
Gadiraju, H.K.V., 2022. Improved performance of PV water pumping system using dynamic reconfiguration algorithm under partial shading conditions. CPSS Transactions on Power Electronics and Applications, 7, pp. 206–215. Doi:10.24295/CPSSTPEA.2022.00019
Habbi, H.M., and Alhamadani, A., 2018. Power system stabilizer PSS4B model for Iraqi national grid using PSS/E software. Journal of Engineering 24(3), pp. 29–45. Doi:10.31026/j.eng.2018.05.03
He, P., Li, Z., Jin, H., Zhao, C., Fan, J., and Wu, X., 2023. An adaptive VSG control strategy of battery energy storage system for power system frequency stability enhancement. International Journal of Electrical Power and Energy Systems, 149, P. 109039. Doi:10.1016/j.ijepes.2023.109039
Isknan, I., Asbayou, A., Hamid Adaliou, A., Ihlal, A., and Bouhouch, L., 2023. Comparative study and simulation of advanced MPPT control algorithms for a photovoltaic system. Indonesian Journal of Electrical Engineering and Computer Science, 30(46), pp. 46-56. Doi:10.11591/ijeecs.v30.i1.
Jamil, H., Qayyum, F., Iqbal, N., and Kim, D.-H., 2022. Enhanced harmonics reactive power control strategy based on multilevel inverter using ML-FFNN for dynamic power load management in microgrid. Sensors, 22, P. 6402. Doi:10.3390/s22176402
Jane, R.S., Vaucher, G., Berman, M., and Parker, G., 2022. Military operations research society optimizing tactical microgrid operation using in-situ forecasting techniques. Source: Military Operations Research, 27, pp. 25–44. Doi:10.2307/27140354
Kaushal, J., and Basak, P., 2020. Power quality control based on voltage sag/swell, unbalancing, frequency, THD and power factor using artificial neural network in PV integrated AC microgrid. Sustainable Energy, Grids and Networks, 23, P. 100365. Doi:10.1016/j.segan.2020.100365
Kulkarni, P., and Deshmukh, S.P., 2019. Different converter topologies for solar photovoltaic system with methods for maximum power point tracking algorithms. International Journal of Innovative Technology and Exploring Engineering, 8, pp. 1112–1118. Doi:10.35940/ijitee.J1202.0981119
Millah, I.S., Chang, P.C., Teshome, D.F., Subroto, R.K., Lian, K.L., and Lin, J.F., 2022. An enhanced grey wolf optimization algorithm for photovoltaic maximum power point tracking control under partial shading conditions. IEEE Open Journal of the Industrial Electronics Society, 3, pp. 392–408. Doi:10.1109/OJIES.2022.3179284
Millah, I.S., Subroto, R.K., Chang, Y.W., Lian, K.L., and Ke, B.R., 2021. Investigation of maximum power point tracking of different kinds of solar panels under partial shading conditions. IEEE Trans Ind, Appl 57, pp. 17–25. Doi:10.1109/TIA.2020.3029998
Mohamed, H.A., and Habbi, H.M., 2020. Power quality of dual two-level inverter fed open end winding induction motor. Indonesian Journal of Electrical Engineering and Computer Science, 18, pp. 688-697. Doi:10.11591/ijeecs.v18.i2.pp688-697
Paduani, V.D., Yu, H., Xu, B., and Lu, N., 2022. A Unified power-setpoint tracking algorithm for utility-scale pv systems with power reserves and fast frequency response capabilities. IEEE Trans Sustain Energy, 13, pp. 479–490. Doi:10.1109/TSTE.2021.3117688
Pendem, S.R., and Mikkili, S., 2018. Modeling, simulation and performance analysis of solar PV array configurations (Series, Series–Parallel and Honey-Comb) to extract maximum power under Partial Shading Conditions. Energy Reports, 4, pp. 274–287. Doi:10.1016/j.egyr.2018.03.003
Pervez, I., Antoniadis, C., and Massoud, Y., 2022. A reduced search space exploration metaheuristic algorithm for MPPT. IEEE Access, 10, pp. 26090–26100. Doi:10.1109/ACCESS.2022.3156124
Rao, V.S., and Sundaramoorthy, K., 2022. Performance analysis of voltage multiplier coupled cascaded boost converter with solar PV integration for DC microgrid application. IEEE Transactions on Industry Applications, 59(1), pp.1013-1023. Doi:10.1109/TIA.2022.3209616
Saadaoui, K., Rhazi, K.S., Mejdoub, Y., and Aboudou, A., 2023. Modelling and simulation for energy management of a hybrid microgrid with droop controller. International Journal of Electrical and Computer Engineering (IJECE), 13, P. 2440. Doi:10.11591/ijece.v13i3.pp2440-2448
Singh, M., V, M.H., S, V.H., 2022. Investigation on power system stability with integration of renewable resources. 2022 IEEE 10th Power India International Conference (PIICON). IEEE, pp. 1–6. Doi:10.1109/PIICON56320.2022.10045098
Nhung, L.T.H., Phung, T.T., Nguyen, H.M.V., Le, T.N., Nguyen, T.A., and Vo, T.D., 2022. Load shedding in microgrids with dual neural networks and AHP algorithm. Engineering, Technology & Applied Science Research, 12(1), pp. 8090-8095. Doi:10.48084/etasr.4652
Vanti, S., Bana, P.R., D’Arco, S., and Amin, M., 2022. Single-stage grid-connected PV system with finite control set model predictive control and an improved maximum power point tracking. IEEE Trans Sustain Energy, 13, pp. 791–802. Doi:10.1109/TSTE.2021.3132057
Wen, L., Zhou, K., Yang, S., and Lu, X., 2019. Optimal load dispatch of community microgrid with deep learning based solar power and load forecasting. Energy, 171, pp. 1053–1065. Doi:10.1016/j.energy.2019.01.075
Yang, M., Cui, Y., and Wang, J., 2023. Multi-Objective optimal scheduling of island microgrids considering the uncertainty of renewable energy output. International Journal of Electrical Power & Energy Systems, 144, P. 108619. Doi:10.1016/j.ijepes.2022.108619
Zhou, L., Chen, Y., Luo, A., Guerrero, J.M., Zhou, X., Chen, Z., and Wu, W., 2016. Robust two degrees‐of‐freedom single‐current control strategy for LCL‐type grid‐connected DG system under grid‐frequency fluctuation and grid‐impedance variation. IET Power Electronics, 9, pp. 2682–2691. Doi:10.1049/iet-pel.2016.0120