Intelligent Dust Monitoring System Based on IoT

محتوى المقالة الرئيسي

Ali Y. Hassan
Muna Hadi Saleh

الملخص

Dust is a frequent contributor to health risks and changes in the climate, one of the most dangerous issues facing people today. Desertification, drought, agricultural practices, and sand and dust storms from neighboring regions bring on this issue. Deep learning (DL) long short-term memory (LSTM) based regression was a proposed solution to increase the forecasting accuracy of dust and monitoring. The proposed system has two parts to detect and monitor the dust; at the first step, the LSTM and dense layers are used to build a system using to detect the dust, while at the second step, the proposed Wireless Sensor Networks (WSN) and Internet of Things (IoT) model is used as a forecasting and monitoring model. The experiment DL system train and test part was applied to dust phenomena historical data. Its data has been collected through the Iraqi Meteorological Organization and Seismology (IMOS) raw dataset with 170237 of 17023 rows and 10 columns. The LSTM model achieved small time, computationally complexity of, and layers number while being effective and accurate for dust prediction. The simulation results reveal that the model's mean square error test reaches 0.12877 and Mean Absolute Error (MAE) test is 0.07411 at the same rates of learning and exact features values of vector in the dense layer, representing a neural network layer deeply is connected to the LSTM training proposed model. Finally, the model suggested enhances monitoring performance.

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"Intelligent Dust Monitoring System Based on IoT" (2024) مجلة الهندسة, 30(06), ص 39–56. doi:10.31026/j.eng.2024.06.03.

المراجع

Abd Halim, A.A., Mohamad, R., Rahman, F.Y.A., Harun, H. and Anas, N.M., 2023. IoT based smart irrigation, control, and monitoring system for chilli plants using NodeMCU-ESP8266. Bulletin of Electrical Engineering and Informatics, 12(5), pp. 3053-3060. Doi. 10.11591/eei. v12i5.5266

Awadh, S.M., 2023. Impact of North African sand and dust storms on the Middle East using Iraq as an example: Causes, sources, and mitigation. Atmosphere, 14(1), p.180. Doi: 10.3390/atmos14010180

Booz, J., Yu, W., Xu, G., Griffith, D. and Golmie, N., 2019. A deep learning-based weather forecast system for data volume and recency analysis. In 2019 International Conference on Computing, Networking and Communications (ICNC), pp. 697-701. IEEE. Doi:10.1109/ICCNC.2019.8685584

Chicco, D., Warrens, M.J. and Jurman, G., 2021. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE, and RMSE in regression analysis evaluation. PeerJ Computer Science, 7, P.e623. Doi:10.7717/peerj-cs.623/table-1

Correa, M.A., Franco, S.A., Gómez, L.M., Aguiar, D. and Colorado, H.A., 2023. Characterization methods of ions and metals in particulate matter pollutants on PM2. 5 and PM10 samples from several emission sources. Sustainability, 15(5), P. 4402. Doi: 10.3390/su15054402

Darvishi Boloorani, A., Soleimani, M., Papi, R., Neysani Samany, N., Teymouri, P. and Soleimani, Z., 2023. Sources, drivers, and impacts of sand and dust storms: a global view. In Dust and Health: Challenges and Solutions (pp. 31-49). Cham: Springer International Publishing. Doi:10.1007/978-3-031-21209-3_3

El-Habil, B.Y. and Abu-Naser, S.S., 2022. Global climate prediction using deep learning. J Theor Appl Inf Technol, 100, p.24.

Gholami, H. and Mohammadifar, A., 2022. Novel deep learning hybrid models (CNN-GRU and DLDL-RF) for the susceptibility classification of dust sources in the Middle East: a global source. Scientific Reports, 12(1), p.19342. Doi: 10.1038/s41598-022-24036-5

Joodi, M.A., Saleh, M.H. and Kadhim, D.J., 2022. A proposed 3-stage CNN classification model based on augmentation and denoising. International Journal of Nonlinear Analysis and Applications. pp. 1–20. Doi: 10.22075/IJNAA.2022.27970.3770

Joodi, M.A., Saleh, M.H. and Khadhim, D.J., 2023. Proposed face detection classification model based on Amazon Web Services Cloud (AWS). Journal of Engineering, 29(4), pp.176-206. Doi: 10.31026/j.eng.2023.04.12

Haleem, A.M., Al-Obaidy, A.H.M. and Haleem, S.M., 2019. Air quality assessment of some selected hospitals within Baghdad city. Engineering and Technology Journal, 37(1), pp.59-63. Doi: 10.30684/etj.37.1C.9

He, H., Gao, Y. and Zhang, Z., 2016, May. The urban road dust monitoring system based on ZigBee. In 2016 Chinese Control and Decision Conference (CCDC) (pp. 1793-1796). IEEE. Doi: 10.1109/CCDC.2016.7531272

Hodson, T.O., 2022. Root-Mean-Square Error (RMSE) or Mean Absolute Error (MAE): When to use them or not. Geoscientific Model Development, 15(14), pp. 5481-5487. Doi:10.5194/gmd-15-5481-2022

Hojaiji, H., Kalantarian, H., Bui, A.A., King, C.E. and Sarrafzadeh, M., 2017, March. Temperature and humidity calibration of a low-cost wireless dust sensor for real-time monitoring. In 2017 IEEE Sensors Applications Symposium (SAS) (pp. 1-6). IEEE. Doi: 10.1109/SAS.2017.7894056

Kubheka, S., 2023. South African inflation modelling using bootstrapped long short-term memory methods. SN Business & Economics, 3(7), p.110. Doi:10.1007/s43546-023-00490-9

Kumari, S. and Singh, S.K., 2022. Machine learning-based time series models for effective CO2 emission prediction in India. Environmental Science and Pollution Research, pp.1-16. Doi: 10.1007/s11356-022-21723-8

Li, L., Zhang, R., Sun, J., He, Q., Kong, L. and Liu, X., 2021. Monitoring and prediction of dust concentration in an open-pit mine using a deep-learning algorithm. Journal of Environmental Health Science and Engineering, 19, pp. 401-414. Doi: 10.1007/s40201-021-00613-0

Li, Y., Zhu, Z., Kong, D., Han, H. and Zhao, Y., 2019. EA-LSTM: Evolutionary attention-based LSTM for time series prediction. Knowledge-Based Systems, 181, p.104785. Doi: 10.1016/j.knosys.2019.05.028

Low, R., Cheah, L. and You, L., 2020. Commercial vehicle activity prediction with imbalanced class distribution using a hybrid sampling and gradient boosting approach. IEEE Transactions on Intelligent Transportation Systems, 22(3), pp.1401-1410. Doi:10.1109/TITS.2020.2970229

Malleswari, S.M.S.D. and Mohana, T.K., 2022. Air pollution monitoring system using IoT devices. Materials Today: Proceedings, 51, pp.1147-1150. Doi:10.1016/j.matpr.2021.07.114

Manisalidis, I., Stavropoulou, E., Stavropoulos, A. and Bezirtzoglou, E., 2020. Environmental and health impacts of air pollution: a review. Frontiers in public health, 8, p.14. Doi:10.3389/fpubh.2020.00014

Ganji, A., Youssefi, O., Xu, J., Mallinen, K., Lloyd, M., Wang, A., Bakhtari, A., Weichenthal, S. and Hatzopoulou, M., 2023. Design, calibration, and testing of a mobile sensor system for air pollution and built environment data collection: The urban scanner platform. Environmental Pollution, 317, p.120720. Doi:10.1016/j.envpol.2022.120720

Ghadi, N.M. and Salman, N.H., 2022. Deep learning-based segmentation and classification techniques for brain tumor MRI: A review. Journal of Engineering, 28(12), pp.93-112. Doi. 10.31026/j.eng.2022.12.07

Ghazal, N.K., 2020. Monitoring dust storm using Normalized Difference Dust Index (NDDI) and brightness temperature variation in Simi arid areas over Iraq. Iraqi Journal of Physics, 18(45), pp.68-75. Doi: 10.30723/ijp.18.45.68-75

Paithankar, D.N., Pabale, A.R., Kolhe, R.V., William, P. and Yawalkar, P.M., 2023. Framework for implementing air quality monitoring system using LPWA-based IoT technique. Measurement: Sensors, 26, p.100709. Doi: 10.1016/j.measen.2023.100709

Pallavi, S., Ramya Laxmi, K., Ramya, N. and Raja, R., 2020. Study and analysis of modified mean shift method and Kalman filter for moving object detection and tracking. In Proceedings of the Third International Conference on Computational Intelligence and Informatics: ICCII 2018 (pp. 821-828). Springer Singapore. Doi:10.1007/978-981-15-1480-7_76.

Parveen, S., Kumar, S.S., MohanRaj, P., Jabakumar, K. and Ganesh, R.S., 2022. Design of a dense layered network model for epileptic seizures prediction with feature representation. International Journal of Advanced Computer Science and Applications, 13(10). pp. 218–223. Doi:10.14569/IJACSA.2022.0131027

Pullan, P., Gautam, C. and Niranjan, V., 2020, October. Air quality management system. In 2020 IEEE International Conference on Computing, Power and Communication Technologies (GUCON) (pp. 436-439). IEEE. Doi: 10.1109/GUCON48875.2020.9231233

Querol, X., Tobías, A., Pérez, N., Karanasiou, A., Amato, F., Stafoggia, M., García-Pando, C.P., Ginoux, P., Forastiere, F., Gumy, S. and Mudu, P., 2019. Monitoring the impact of desert dust outbreaks for air quality for health studies. Environment International, 130, p.104867. Doi:10.1016/j.envint.2019.05.061

Saleh, M.H., Ayesh, A.N. and Sathyaprakash, P., 2023. Development prediction algorithm of vehicle travel time based traffic data. Periodicals of Engineering and Natural Sciences, 11(1), pp.197-207. Doi: 10.21533/pen.v11i1.3447

Mohammed, Q.S.A.A.D. and Sa'ur, R.H., 2016. Data base for dynamic soil properties of seismic active zones in Iraq. Journal of Engineering, 22(7), pp.1-18. Doi:10.31026/j.eng.2016.07.01

Salih, Z. and Saleh, M.H., 2022. Attitude and altitude control of quadrotor carrying a suspended payload using genetic algorithm. Journal of Engineering, 28(5), pp. 25-40. Doi:10.31026/j.eng.2022.05.03

Shi, L., Zhang, J., Zhang, D., Igbawua, T. and Liu, Y., 2020. Developing a dust storm detection method combining Support Vector Machine and satellite data in typical dust regions of Asia. Advances in Space Research, 65(4), pp.1263-1278. Doi: 10.1016/j.asr.2019.11.027

Shi, M., Yeatman, E.M. and Holmes, A.S., 2019, November. Energy harvesting piezoelectric wind speed sensor. In Journal of Physics: Conference Series (Vol. 1407, No. 1, p. 012044). IOP Publishing. Doi 10.1088/1742-6596/1407/1/012044

Tagliabue, L.C., Cecconi, F.R., Rinaldi, S. and Ciribini, A.L.C., 2021. Data driven indoor air quality prediction in educational facilities based on IoT network. Energy and Buildings, 236, p.110782. Doi:10.1016/j.enbuild.2021.110782

Tulenkov, A., Parkhomenko, A., Sokolyanskii, A., Stepanenko, A. and Zalyubovskiy, Y., 2018, September. The features of wireless technologies application for Smart House systems. In 2018 IEEE 4th International Symposium on Wireless Systems within the International Conferences on Intelligent Data Acquisition and Advanced

Computing Systems (IDAACS-SWS) (pp. 1-5). IEEE. Doi: 10.1109/IDAACS-SWS.2018.8525842

Zhu, Y., Al-Ahmed, S.A., Shakir, M.Z. and Olszewska, J.I., 2022. LSTM-based IoT-enabled CO2 steady-state forecasting for indoor air quality monitoring. Electronics, 12(1), p.107. Doi. 10.3390/electronics12010107

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.