تطبيق الشبكات العصبية الاصطناعية مع معادلات بورغوين ويونغ للتنبؤ بمعدل الاختراق في حقل الغراف النفطي

محتوى المقالة الرئيسي

Ebrahim A. AL-Assad
Sameera M. Hamd-Allah

الملخص

يعتبر توقع معدل الاختراق  أمرا حاسما لعمليات حفر آبار النفط الآمنة والفعالة من حيث التكلفة. يمثل نموذج بورغوين ويانج  نهجا قائما على المعادلات واسع الاستخدام تم تطويره في عام 1974 لتوقع معدل الاختراق  في آبار النفط بناءً على الانحدار الخطي المتعدد.


الشبكة العصبية الاصطناعية (ANN) هي تقنية تعلم آلي تقوم بتحليل البيانات وتقديم التوقعات. وقد تم إجراء العديد من الدراسات حول استخدام نموذج BYM على مستوى العالم، كما تم إجراء دراسات أخرى لتحسينه في ظروف مختلفة. الشبكات الصناعية الاصطناعية تستخدم أيضًا في هذه المجالات وقد حققت أداءً جيدًا.


تقترح هذه الدراسة الاستفادة من مميزات كل من الشبكات العصبية التغذوية الأمامية  من نموذج الشبكة العصبية الاصطناعية  ومعادلات نموذج بورغوين ويونغ وتوظيفها في توقع معدل الاختراق. إن دمج معادلات نموذج بورغوين ويونغ مع الشبكة الصناعية الاصطناعية  لتوقع معدل الاختراق يعني استخدام النموذج القائم على المعادلات إلى جانب قوة وقدرات التعلم الآلي لتحسين دقة وفعالية توقع معدل الاختراق في آبار النفط.


يُظهر النهج المقترح  ارتفاعًا في R2، وقلة في مجموع الاخطاء (البقايا) ، وقيمة P-value تساوي صفر، يشير هذا إلى أن النهج الحالي ذو قيمة كأداة مناسبة للتنبؤ الدقيق بمعدل الاختراق لخطط الحفر المستقبلية.

تفاصيل المقالة

كيفية الاقتباس
"تطبيق الشبكات العصبية الاصطناعية مع معادلات بورغوين ويونغ للتنبؤ بمعدل الاختراق في حقل الغراف النفطي" (2024) مجلة الهندسة, 30(12), ص 146–166. doi:10.31026/j.eng.2024.12.10.
القسم
Articles

كيفية الاقتباس

"تطبيق الشبكات العصبية الاصطناعية مع معادلات بورغوين ويونغ للتنبؤ بمعدل الاختراق في حقل الغراف النفطي" (2024) مجلة الهندسة, 30(12), ص 146–166. doi:10.31026/j.eng.2024.12.10.

تواريخ المنشور

الإستلام

2024-04-17

النسخة النهائية

2024-07-30

الموافقة

2024-08-15

النشر الالكتروني

2024-12-01

المراجع

Abdulmalek, A.S., Elkatatny, S., Abdulraheem, A., Mahmoud, M., Abdulwahab, Z.A., and Mohamed, I.M., 2018. Prediction of rate of penetration of deep and tight formation using support vector machine. Paper presented at Conference, SPE Kingdom of Saudi Arabia Annual Technical Symposium and Exhibition, Dammam, Saudi Arabia, April 23-26, SPE-192316-MS. https://doi.org/10.2118/192316-MS

Alsubaih, A., Albadran, F., and Alkanaani, N., 2018. Mechanical specific energy and statistical techniques to maximizing the drilling rates for production section of Mishrif wells in southern Iraq fields. Paper presented in SPE/IADC Middle East Drilling Technology Conference and Exhibition, Abu Dhabi, UAE, January 29-31, SPE-189354-MS. https://doi.org/10.2118/189354-MS

AL-Zirej, Z.J., and Hassan, A.H., 2020. An artificial neural network for predicting rate of penetration in AL-Khasib formation – Ahdeb Oil Field. Iraqi Journal of Science, 61(05), pp. 1051-1062. https://doi.org/10.24996/ijs.2020.61.5.14

Amar, K., and Ibrahim, A., 2012. Rate of penetration prediction and optimization using advances in artificial neural networks, a comparative study. Paper presented in Proceedings of the 4th International Joint Conference on Computational Intelligence -

Volume 1: NCTA 647-652, Barcelona, Spain. https://doi.org/10.5220/0004172506470652

Amel, H.A., 2017. Bit records analysis for bits evaluating and selection. Journal of Engineering, 23(10), pp. 97–113. https://doi.org/10.31026/j.eng.2017.10.08.

Asad, S., Vusal, I., and Solomonov, D.X., 2022. Application of machine learning techniques for rate of penetration prediction. Paper presented at the SPE Annual Caspian Technical Conference, Nur-Sultan, Kazakhstan, November 15–17, SPE-212088-MS. https://doi.org/10.2118/212088-MS

Ayad, A.A., Safaa, H.S., and Amel, H.A., 2015. Bit performance in directional oil wells. Journal of Engineering, 21(11), pp. 80–93. https://doi.org/10.31026/j.eng.2015.11.05.

Bahari, M.H., Bahari, A., Nejati, M.F., and Naghibi, S.M.B., 2008. Determining bourgoyne and young model coefficients using a genetic algorithm to predict drilling rate. Journal of Applied Sciences, 8(17), pp. 3050-3054. https://doi.org/10.3923/jas.2008.3050.3054

Bingham, M.G., 1964. A new approach to interpreting rock drillability. Book published by Petroleum Publishing Company, Houston, Texas, USA, April.

Bourgoyne, J.A.T., Millheim, K.K., Chenevert, M.E., and Young J.F.S., 1986. Applied drilling engineering. Book Published by SPE the Society of Petroleum Engineers, EISBN: 978-1-61399-919-6. https://doi.org/10.2118/9781555630010

Bourgoyne. J.A.T., and Young J.F.S., 1974. A multiple regression approach to optimal drilling and abnormal pressure detection. SPE, Society of Petroleum Engineers Journal, 14 (4), pp. 371–384, SPE-4238-PA. https://doi.org/10.2118/4238-PA

Chengxi, L., Peng, C., and Chris, C., 2023. A comparison of machine learning algorithms for rate of penetration prediction for directional wells. Paper presented at the SPE Middle East Oil, Gas and Geosciences Show, Manama, Bahrain, February 19-21, SPE-213321-MS. https://doi.org/10.2118/213321-MS

Chris, C., 2023. Machine-learning model developed for rate-of-penetration optimization. Journal of Petroleum Technology JPT, 75(02), pp. 59–61, SPE-0223-0059-JPT. https://doi.org/10.2118/0223-0059-jpt

Darwish, A.K., Rasmussen, T.M., and Al-Ansari, N., 2020. Controllable drilling parameter optimization for roller cone and polycrystalline diamond bits. Journal of Petroleum Exploration and Production Technology, 10(04), pp. 1657–1674. https://doi.org/10.1007/s13202-019-00823-1

Eckel, J.R. 1967. Microbit studies of the effect of fluid properties and hydraulics on drilling rate. J Pet Technol Apr;19(4):541-546. Trans. AIME, Vol. 240. https://doi.org/10.2118/1520-PA

Elkatatny, S.M., Tariq, Z., Mahmoud, M.A., and Al-AbdulJabbar, A., 2017. Optimization of the rate of penetration using artificial intelligence techniques. Paper presented at the 51st U.S. Rock Mechanics/Geomechanics Symposium, San Francisco,

California, June 25-28, ARMA-17-429.

Eren, T., and Ozbayoglu, M.E., 2010. Real-time optimization of drilling parameters during drilling operations. Paper presented at the SPE Oil and Gas India Conference and Exhibition, Mumbai, India, 20-22 January, SPE-129126-MS. https://doi.org/10.2118/129126-MS

Fei, Z., Honghai, F., Yuhan, L., Hongbao, Z., and Rongyi, J., 2023. Hybrid model of machine learning method and empirical method for rate of penetration prediction based on data similarity. Applied Sciences, 13(10), pp. 5870. https://doi.org/10.3390/app13105870.

Galle, E.M., and Woods, H.B., 1963. Best constant weight and rotary speed for rotary rock bits. Book published by Hughes Tool Company.

Graham, J.W., and N.L. Muench. 1959. Analytical determination of optimum bit weight and rotary speed combinations. Paper presented at the Fall Meeting of the Society of Petroleum Engineers of AIME, Dallas, Texas, October 4-7. https://doi.org/10.2118/1349-G

Hamad-Allah, S.M., and Ismael, A.A., 2008. Application of mathematical drilling model on southern Iraq oil fields. Journal of Engineering, 14(03), pp. 2763–2784. https://doi.org/10.31026/j.eng.2008.03.17.

Hassan. A.H., 2015. Correlation of penetration rate with drilling parameters for an Iraqi field using mud logging data. Iraqi Journal of Chemical and Petroleum Engineering IJCPE, 16(03), pp. 35–44. https://doi.org/10.31699/IJCPE.2015.3.4.

Hongtao, L., Yan, J., Xianzhi, S., and Zhijun, P., 2022. Rate of penetration prediction method for ultra-deep wells based on LSTM–FNN. Applied Sciences, 12(15), pp. 7731. https://doi.org/10.3390/app12157731.

Hou, B., Chen, M., and Yuan, J., 2014. Optimization and application of bit selection technology for improving the penetration rate. Research Journal of Applied Sciences Engineering and Technology, 8(2), pp. 179-187, https://doi.org/10.19026/rjaset.8.957.

Huihui, J.i., Yi, S.L., Shuting, C., Zelong, X., and Liang, Z., 2022. An advanced long short-term memory (LSTM) neural network method for predicting rate of penetration (ROP). ACS Omega, 8(1), pp. 934–945. https://doi.org/10.1021/acsomega.2c06308

Irawan, S., Abd-Rahman, A.M., and Tunio, S.Q., 2012. Optimization of weight on bit during drilling operation based on rate of penetration model. Research Journal of Applied Sciences, Engineering and Technology, 4(12), pp. 1690–1695.

Kareem, N., Al-Khafaji, A., Sadooni, F. 2022. Evaluation of petrophysical characteristics of Mishrif and Yamama reservoirs, in Garraf Oil Field, Southern Iraq, Based on Well-Logging Interpretation. Iraqi Journal of Science. 63(3), pp. 115-1128. https://doi.org/10.24996/ijs.2022.63.3.19

Liu, Y., Kibbey, J., Bai, Y., and Wu, X., 2018. Real-time bit wear monitoring and prediction using surface mechanics data analytics: a step toward digitization through agile development. Paper presented at the IADC/SPE Drilling Conference and Exhibition, Fort Worth, Texas, USA, March 6-8, SPE-189602-MS. https://doi.org/10.2118/189602-MS.

Majid, M., and Ayad, A.A., 2019. Selection of suitable drilling parameters for obtaining high rate of penetration in Majnoon oilfield. Iraqi Journal of Chemical and Petroleum Engineering IJCPE, 20(1), pp. 65-68. https://doi.org/10.31699/IJCPE.2019.1.9.

Maurer W.C., 1962. The 'perfect cleaning' theory of rotary drilling. Journal of Petroleum Technology JPT, 14 (11), pp. 1270–1274. https://doi.org/10.2118/408-PA.

Miyora, T.O., 2014. Modeling and optimization of geothermal drilling parameters: a case study of well MW-17 in Menengai, Kenya. Master thesis, United Nations University, Tokyo, Japan, ISBN 9979683449.

Mochizuki, S., Saputelli, L.A., Kabir, C.D., Cramer, R., and Lochmann, M.J., 2004. Real-time optimization: classification and assessment. SPE Production & Operation, 21 (04), pp. 455–466, SPE-90213-PA. https://doi.org/10.2118/90213-PA.

Moradi, H., Bahari, M.H., Sistani, M.B.N., and Bahari, A., 2010. Drilling rate prediction using an innovative soft computing approach. Scientific Research and Essays, 5(13), pp. 1583-1588.

Muhammad, T.F., Irawan, S.B., Taufan, M., Pri, A.R., Marmora, T.M., Asri, N., and Onnie, R., 2023. Application of artificial neural network to estimate rate of penetration for geothermal well drilling in south Sumatera. International journal Emerging technology and advanced engineering, 13, pp. 135-140. https://doi.org/10.46338/ijetae0323_14

Ololade, A., Ibiye, I., and Kingsley, A., 2021. Comparative evaluation of artificial intelligence models for drilling rate of penetration prediction. Paper presented at the SPE Nigeria Annual International Conference and Exhibition, Lagos, Nigeria,

August 2-4, SPE-208451-MS. https://doi.org/10.2118/208451-MS.

Padhma, M., 2023. A comprehensive introduction to evaluating regression models. Data Science Blogathon updated On October 31st.

Petronas operation, 2016. Notice of operation for Al-Garraf, Ga-J38P oil well, on-shore Iraq. Dhi-qar oil campany library, land drilling, IDC: 55.

Speer, J.W.A., 1959. A method for determining optimum drilling techniques. Paper presented at the Gulf Coast Drilling and Production Meeting, USA, LA, April 24, SPE-1242-G. https://doi.org/10.2118/1242-G.

Teeba, J.S., and Farqad, H., 2022. Development of artificial intelligence models for estimating rate of penetration in east Baghdad field, middle Iraq. Iraqi Geological Journal, 55(1C), pp. 112-124. https://doi.org/10.46717/igj.55.1C.9Ms-2022-03-28.

Tong, J., Jie, C., and Dan, S., 2023. A comparative study of deep learning methods for drilling performance prediction. Proceedings SPIE 12604, Paper presented in International Conference on Computer Graphics, Artificial Intelligence, and Data Processing (ICCAID), Guangzhou, China, 23 May, 126044A, pp. 1099-1105. https://doi.org/10.1117/12.2674979.

Warren TM. 1987. Penetration-rate performance of roller-cone bits. SPE Drilling Engineering; 2:9–18. https://doi.org/10.2118/13259-PA.

Yasser, A.K., Fadhil, S.K., and Yousif, K.Y., 2020. Using adaptive neuro fuzzy inference system to predict rate of penetration from dynamic elastic properties. Journal of Engineering, 26(7), pp. 45–61. https://doi.org/10.31026/j.eng.2020.07.04.

Zha, Y., Ramsay, S., and Pham, S., 2018. Real-time surface data-driven wob estimation and control. Paper presented at the SPE Annual Technical Conference and Exhibition, Dallas, Texas, USA, September 24-26, SPE-191723-MS. https://doi.org/10.2118/191723-MS

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.

الأعمال الأكثر قراءة لنفس المؤلف/المؤلفين