مقارنة الأداء بين ركيزة واحدة ومجموعة ركائز قريبة من المنحدر معرضة لأحمال دورية جانبيةباستخدام تحليل العناصر المحدودة

محتوى المقالة الرئيسي

Maryam Hussein Ali
Ammar Abdul Hassan Sheikha

الملخص

تبحث هذه الدراسة في أداء ركيزة واحدة ومجموعة ركائز (2×2) تقع بالقرب من منحدر طيني مشبع تحت الأحمال الجانبية الدورية باستخدام تحليل العناصر المحدودة (FEA). أجريت عمليات المحاكاة باستخدام Plaxis 3D مع نموذج التربة المتصلبة (HSM)، والذي يسمح بتمثيل أكثر دقة لسلوك التربة، وخاصة في ظروف التحميل الدوري. أخذ النموذج في الاعتبار التربة الطينية ذات المعلمات المستمدة من التقرير الجيوتقني الرسمي الذي أعدته مختبرات مكتب الاستشارات الهندسية (CEB) في كلية الهندسة بجامعة بغداد. تم وضع كل من الركيزة الواحدة ومجموعة الركائز على مسافة (4D) من منحدر مرتفع (8 أمتار) مع تدرج (1:4). تضمنت ظروف التحميل الأحمال الرأسية الثابتة والأحمال الجانبية الدورية. أهم النتائج التي تم التوصل إليها، قللت مجموعات الركائز من الإزاحة الجانبية بنسبة 30-50٪ مقارنة بالركائز الفردية، التي عانت من إزاحة أكبر بنسبة 20-40٪ بالقرب من المنحدرات بسبب دعم التربة غير المستوي. تسبب التحميل الدوري أحادي الاتجاه في إزاحات دائمة أكبر من التحميل الدوري ثنائي الاتجاه، بينما زاد التحميل ثنائي الاتجاه من مخاطر التعب، مما أدى إلى تدهور قوة الطين بنسبة تصل إلى 50%. وحدثت ذروة عزم الانحناء عند رؤوس الركائز وقمم المنحدرات، لكن الأكوام المجمعة خفّضت هذه الإجهادات بنسبة 30%.

##plugins.themes.bootstrap3.displayStats.downloads##

##plugins.themes.bootstrap3.displayStats.noStats##

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"مقارنة الأداء بين ركيزة واحدة ومجموعة ركائز قريبة من المنحدر معرضة لأحمال دورية جانبيةباستخدام تحليل العناصر المحدودة" (2025) مجلة الهندسة, 31(11), ص 207–223. doi:10.31026/j.eng.2025.11.12.

المراجع

Andersen, K.H., 2015. Cyclic soil parameters for offshore foundation design. Frontiers in offshore geotechnics III, 5, pp. 5-82.

Basack, S., and Dey, S., 2012. Influence of relative pile-soil stiffness and load eccentricity on single pile response in sand under lateral cyclic loading. Geotechnical and Geological Engineering, 30, pp. 737-751.

Broms, B.B., 1964. Lateral resistance of piles in cohesive soils. Journal of the Soil Mechanics and Foundations Division, 90(2), pp. 27-63. https://doi.org/10.1061/JSFEAQ.0000611

Darcy, H., 1856. Les fontaines publiques de la ville de Dijon: exposition et application des principes à suivre et des formules à employer dans les questions de distribution d'eau (Vol. 1). Victor dalmont.

Deendayal, R., Sitharam, T.G., and Muthukkumaran, K., 2016. Effect of earthquake on a single pile located in sloping ground. International Journal of Geotechnical Earthquake Engineering (IJGEE), 7(1), pp. 57-72. https://doi.org/10.4018/IJGEE.2016010104.

Deendayal, R., 2017. Behavior of a single pile located on sloping ground of a soil under cyclic loading: a finite element analysis. International Journal of Civil Engineering and Technology (IJCIET), 8(10), pp. 925-932.

Gazetas, G., and Dobry, R., 1984. Simple radiation damping model for piles and footings. Journal of Engineering Mechanics, 110(6), pp. 937-956. https://doi.org/10.1061/(ASCE)0733-9399(1984)110:6(937)

Gazetas, G., 1984. Seismic response of end-bearing single piles. International Journal of Soil Dynamics and Earthquake Engineering, 3(2), pp. 82-93. https://doi.org/10.1016/0261-7277(84)90003-2

Hopstad, A.L.H., Argyriadis, K., Manjock, A., Goldsmith, J., and Ronold, K.O., 2018, November. DNV GL standard for floating wind turbines. In International Conference on Offshore Mechanics and Arctic Engineering (Vol. 51975, P. V001T01A020). American Society of Mechanical Engineers. https://doi.org/10.1115/IOWTC2018-1035

Hussein, A.K., Mahmood, M.R., and Aswad, M.F., The behavior of secant pile wall embedded within soil by numerical analysis. http://dx.doi.org/10.30684/etj.2024.153503.1818

Islam, M.A., and Gnanendran, C.T., 2013. Slope stability under cyclic foundation loading-Effect of loading frequency. In Geo-Congress 2013: Stability and Performance of Slopes and Embankments III, pp. 750-761. https://doi.org/10.1061/9780784412787.075

Jin, Y., Bao, X., Kondo, Y., and Zhang, F., 2010. Numerical evaluation of group-pile foundation subjected to cyclic horizontal load. Frontiers of Architecture and Civil Engineering in China, 4, pp. 196-207.

Lehane, B.M., and Jardine, R.J., 1994. Displacement-pile behaviour in a soft marine clay. Canadian Geotechnical Journal, 31(2), pp. 181-191. https://doi.org/10.1139/t94-024

Long, J.H., and Vanneste, G., 1994. Effects of cyclic lateral loads on piles in sand. Journal of Geotechnical Engineering, 120(1), pp. 225-244. https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(225)

Maheshwari, P. and Viladkar, M., 2007. Strip footings on a three layer soil system: theory of elasticity approach. International Journal of Geotechnical Engineering, 1(1), pp. 47-59. https://doi.org/10.3328/IJGE.2007.01.01.47-59

Matlock, H., 1970, April. Correlation for design of laterally loaded piles in soft clay. In Offshore Technology Conference (pp. OTC-1204). OTC. https://doi.org/10.4043/1204-MS

Naeini, S.A., and Hamidpoorzare, M., 2011. Numerical modeling of the seismic behavior of pile group in soil slopes. Unsaturated Soils: Theory and Practice.

Nimbalkar, S., and Basack, S., 2024. Pile group in clay subjected to cyclic lateral load: Numerical modelling and design recommendation. Marine Georesources & Geotechnology, 42(1), pp. 67-87. https://doi.org/10.1080/1064119X.2022.2150103

Orense, R.P., Yoshimoto, N. and Hyodo, M., 2012. Cyclic shear behavior and seismic response of partially saturated slopes. Soil Dynamics and Earthquake Engineering, 42, pp. 71-79. https://doi.org/10.1016/j.soildyn.2012.06.006

Peng, W.Z., Zhao, M.H., Yang, C.W., and Zhao, H., 2023. Model test and finite beam element solution of cyclic lateral characteristics of piles in sloping ground. Rock and Soil Mechanics, 44(2), P. 4. https://doi.org/10.16285/j.rsm.2022.5186

Poulos, H.G., 1971. Behavior of laterally loaded piles: I-single piles. Journal of the Soil Mechanics and Foundations Division, 97(5), pp. 711-731. https://doi.org/10.1061/JSFEAQ.0001592

Poulos, H.G., 1989. Cyclic axial loading analysis of piles in sand. Journal of Geotechnical Engineering, 115(6), pp. 836-852. https://doi.org/10.1061/(ASCE)0733-9410(1989)115:6(836)

Qu, L.M., Ding, X.M., Wu, C.R., Long, Y.H., and Yang, J.C., 2020. Effects of topography on dynamic responses of single piles under vertical cyclic loading. Journal of Mountain Science, 17(1), pp. 230-243.

Randolph, M., and Gourvenec, S., 2017. Offshore geotechnical engineering. CRC press. https://doi.org/10.1201/9781315272474

Rao, S.N., Ramakrishna, V.G.S.T., and Rao, M.B., 1998. Influence of rigidity on laterally loaded pile groups in marine clay. Journal of Geotechnical and Geoenvironmental Engineering, 124(6), pp. 542-549. https://doi.org/10.1061/(ASCE)1090-0241(1998)124:6(542)

Rathod, K., Siddhardha, R., Munaga, T., and Gonavaram, K.K., 2024. An approach to characterize cyclic deflection of piles in cohesion less soil media under 1-way and 2-way cyclic loading on sloping ground. Sādhanā, 49(3), P. 210.

Reese, L.C., 1965. Non-dimensional solution for laterally loaded piles with soil modulus assumed proportional to depth. In Proc. 8th Texas Conf. SMFE. The Univ. of Texas.

Schanz, T., Vermeer, P.A., and Bonnier, P.G., 2019. The hardening soil model: Formulation and verification. In Beyond 2000 in Computational Geotechnics, pp. 281-296. Routledge.

Seed, H.B., and Idriss, I.M., 1971. Simplified procedure for evaluating soil liquefaction potential. Journal of the Soil Mechanics and Foundations Division, 97(9), pp. 1249-1273. https://doi.org/10.1061/JSFEAQ.0001662

Standard, B., 2006. Eurocode 1: Actions on structures—. British Standard, United Kingdom, 196.

Sundaramoorthy, M. and Rathod, D., 2024. The behaviour of a hybrid fibre reinforced full-scale concrete piles under lateral cyclic loading. Geotechnical and Geological Engineering, 42(6), pp. 4527-4542.

Terzaghi, K., 1943, Theoretical Soil Mechanics, Wiley, New York.

Wang, L., Zhang, X., and Tinti, S., 2021. Large deformation dynamic analysis of progressive failure in layered clayey slopes under seismic loading using the particle finite element method. Acta Geotechnica, 16(8), pp. 2435-2448.

Wu, F., Chen, C.H., and Litton, R.W., 2020, May. Effect of best-estimate clay PY curves on performance of offshore structures. In Offshore Technology Conference, P. D011S003R001. OTC. https://doi.org/10.4043/30889-MS

Yun, J.W., and Han, J.T., 2023. Evaluation of the dynamic behavior of pile groups considering the kinematic force of the slope using centrifuge model tests. Soil Dynamics and Earthquake Engineering, 173, P. 108106. https://doi.org/10.1016/j.soildyn.2023.108106

Zdravkovic, L., Taborda, D.M.G., Potts, D.M., Jardine, R.J., Sideri, M., Schroeder, F.C., Byrne, B.W., McAdam, R., Burd, H.J., Houlsby, G.T., and Martin, C.M., 2015. Numerical modelling of large diameter piles under lateral loading for offshore wind applications. Frontiers in Offshore Geotechnics III, 1, pp. 759-764.

Zhou, P., Dai, F., Yang, S., Liu, Y., Yan, Z., and Wei, M., 2025. Long-term cyclic performance of offshore jacked piles in structured clays: Insights from model testing. Marine Structures, 101, P. 103769. https://doi.org/10.1016/j.marstruc.2024.103769

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.