تحسين أداء نظام تعديل الكثافة باستخدام تقسيم الطول الموجي القائم على الكشف المباشر لشبكة الوصول اللاسلكي السحابي الأمامية للجيل الخامس

محتوى المقالة الرئيسي

Mohammad A. Mohammad
دكتور أسعد مبدر جاسم الهنداوي
د.سيروان علي محمد

الملخص

تتناول هذه الورقة البحثية تصميم ونمذجة نظام شبكة بصرية سلبية ثنائية الاتجاه ذات عشرين قناة (WDM-PON) مع تعديل
الكثافة مع الكشف المباشر (IM/DD) لشبكة الوصول الراديوي السحابي الأمامية (C-RAN). يعمل النظام بمعدل بيانات يبلغ
25 جيجابت في الثانية لكل قناة، بسعة إجمالية تبلغ 500 جيجابت في الثانية، وقد تمت محاكاته باستخدامOptiSystem V.22.
أجري تحليل أداء النظام بناءً على معدل خطأ البت (BER) لأطوال ألياف بصرية مختلفة ومستويات طاقة ليزر CW. وتُثبت
بيانات المحاكاة قدرة النظام على دعم مواصفات واجهة F1 وFx لنطاق تقسيم وظيفي من 1 إلى 7a، بسرعة 25 جيجابت في
الثانية لكل اتجاه. وتشير نتائج المحاكاة إلى قدرته على استخدام ألياف أحادية الوضع ثنائية الاتجاه بامتداد 11.5 كم، وهو
بسيط واقتصادي، ولا يتطلب معالجة رقمية للإشارة (DSP) أو تضخيمًا بصريًا، ويُعدّ حلاً مناسبًا لنشر شبكات الجيل الخامس
الأمامية قصيرة المدى.

##plugins.themes.bootstrap3.displayStats.downloads##

##plugins.themes.bootstrap3.displayStats.noStats##

تفاصيل المقالة

القسم

Articles

كيفية الاقتباس

"تحسين أداء نظام تعديل الكثافة باستخدام تقسيم الطول الموجي القائم على الكشف المباشر لشبكة الوصول اللاسلكي السحابي الأمامية للجيل الخامس" (2026) مجلة الهندسة, 32(1), ص 198–214. doi:10.31026/j.eng.2026.01.12.

المراجع

Agrawal, G.P., 2012. Fiber-Optic Communication Systems. John Wiley and Sons, New York.

Alqahtani, D., and El-Nahal, F., 2025. Coherent WDM-PON and free space optical (FSO) system for front-haul in next-generation cellular networks. Optik, 323, pp. 1-7.https://doi.org/10.1016/j.ijleo.2024.172212.

Aly, H., and Mohamed, B., 2019. Evaluation and Optimization of TWDM-PON System Capacity Over Single Bidirectional Optical Fiber: Migration Promising Solution for The Next Generation PONs. International Conference on Computer and Information Sciences (ICCIS), pp. 1-6.https://doi.org/10.1109/ICCISci.2019.8716461.

Antariksh, S., Vishal, G ., Sourav, C ., Aman, K., Manoj, S., Shippu, S ., Hunny, P., and Manoj, K., 2025. Performance enhancement of WDM-based RoF systems using EDFA amplifiers. Journal of Optical Communications, pp. 1-9.https://doi.org/10.1515/joc-2025-0042.

Arpita, S., and Lokesh, T., 2018. Design and performance evaluation of bidirectional SS-WDM-PON using FTTH architecture. International Conference on Micro-Electronics and Telecommunication Engineering (ICMETE), pp. 281-284.https://doi.org/10.1109/ICMETE.2018.00068.

Cezanne, J., Jiang, M., Shental, O., Bedewy, A., Sampath, A., Koymen, O., and Li, J., 2023. Design of wireless fronthaul with mmWave LOS-MIMO and sample-level coding for O-RAN and beyond 5G systems. IEEE Open Journal of the Communications Society, 4, pp. 1893-1910.https://doi.org/10.1109/OJCOMS.2023.3308713.

Cheng, Y., Shao, Y., Ding, S., and Chan, C., 2024. Deep reinforcement learning based joint allocation scheme in a TWDM-PON-based mMIMO fronthaul network. IEEE Photonics Journal, 16, pp. 1-11.https://doi.org/10.1109/JPHOT.2024.3388571.

Damir, B., 2024. Overview of available fiber optic backhaul solutions for 5G/6G networks. 2024 International Workshop on Fiber Optics in Access Networks (FOAN), pp. 22-26.https://doi.org/10.1109/FOAN63517.2024.10765757.

Dias, I., Ruan, L., Ranaweera, C., and Wong, E., 2023. From 5G to beyond: passive optical network and multi-access edge computing integration for latency-sensitive applications. Optical Fiber Technology, 75, pp. 1-8.https://doi.org/10.1016/j.yofte.2022.103191.

Effenberger, F., and Luo, Y., 2024. Standardization of wireless fronthaul and backhaul using passive optical network. Handbook of Radio and Optical Networks Convergence, pp. 1123-1140.https://doi.org/10.1007/978-981-97-2282-2_41.

Effenberger, F., and Zhang, D., 2022. WDM-PON for 5G wireless fronthaul. IEEE Wireless Communications, 29, pp. 94-99.https://doi.org/10.1109/MWC.001.2100420.

El-Nahal, F., Xu, T., Alqahtani, D., and Leeson, M., 2023. A Didirectional WDM-PON Free Space Optical (FSO) System for Fronthaul 5G C-RAN Networks. IEEE Photonics Journal, 15, pp. 1-10.https://doi.org/10.1109/JPHOT.2022.3232081.

Fadhela, T., and Alaa, H., 2022. Analysis study of quality factor and bit error rate at wavelength change. Indonesian Journal of Electrical Engineering and Computer Science, 27, pp. 301-308.http://dx.doi.org/10.11591/ijeecs.v27.i1.pp301-308.

Hamadouche, H., Merabet, B., and Bouregaa, M., 2020. Performance analysis and improvement of (2-10) Gbps WDM PON using EDFA amplifiers. 2020 1st International Conference on Communications, Control Systems and Signal Processing (CCSSP),pp. 90-94.https://doi.org/10.1109/CCSSP49278.2020.9151806.

Hamadouche, H., Merabet, B., and Bouregaa, M., 2024. The performance comparison of hybrid WDM/TDM, TDM and WDM PONs with 128 ONUs. Journal of Optical Communications, 44, pp. 1-12.https://doi.org/10.1515/joc-2020-0046.

Hayam, A., and Al-Yasiri., 2024. A new protocol to design cellular systems with variable spreading factors. Journal of Engineering, 10, pp. 1-12.https://doi.org/10.31026/j.eng.2004.01.01.

Kawan, F., and Assad, M., 2023. 450 Gbps low-cost intensity modulation with direct detection (IM/DD) wave length division multiplexing (WDM-PON) for 5G fronthaul. KSII Transactions on Internet and Information Systems (TIIS), 17, pp. 3310-3329.http://doi.org/10.3837/tiis.2023.12.005.

Keiser, G., 2021. Fiber Optic Communication Networks. Springer, Newton Center, USE.

Martina, N., and Moustafa, H., 2020. Performance enhancement of WDM-PONs: Interferometric noise reduction. Reflection, Scattering, and Diffraction from Surfaces VII, 11485, pp. 1-8.https://doi.org/10.1117/12.2568330.

Najwan, M., and Firas, A. . 2025. Interference mitigation for millimeter wave communications in 5G networks using enhanced q-learning. Journal of Engineering, 31, pp. 127-152.https://doi.org/10.31026/j.eng.2025.03.08.

Peng, M., Wang, C., Lau, V., and Poor, H., 2015. Fronthaul-constrained cloud radio access networks: insights and challenges. IEEE Wireless Communications, 22, pp. 152-160.https://doi.org/10.1109/MWC.2015.7096298.

Qutaiba, A., 2025. Performance optimization and architectural advancements in cloud radio access networks (C-RAN) for 5G and beyond. Journal of Electronic & Information Systems, 7. https://doi.org/10.22541/au.174466175.58490173/v1.

Rao, X., Yang, L., Su, J., and Xie, H., 2024. High-order coupled-mode theory for angular symmetry chiral fibers manipulating arbitrary-order orbital angular momentum modes. Journal of Lightwave Technology, 42, pp. 6912-6924.https://doi.org/10.1109/JLT.2024.3413983.

Rasheed, M., Qamar, F., Qamar, N., Shahzadi, R., Ali, M., Khan, M., and Haroon, F., 2020. 128-QAM x 8 channels DWDM communication for optical fiber networks. International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1-6. https://doi.org/10.1109/iCoMET48670.2020.9073828.

Rodoshi, R., Kim, T., and Choi, W., 2020. Resource management in cloud radio access network: Conventional and new approaches. Sensors, 20, pp. 6-18.https://doi.org/10.3390/s20092708.

Sachdeva, S., Sindhwani, M., Singh, G., Kumar, A., Rasane, P., and Singh, J., 2025. Performance investigation of contention and monitoring in long-reach passive optical networks. Journal of Optical Communications, 45, pp. 1-8.https://doi.org/10.1515/joc-2023-0159.

Saifuldeen, A., 2020. Securing physical layer for FHSS communication system using code and phase hopping techniques in CDMA, system design and implementation. Journal of Engineering, 26, pp. 190-205.https://doi.org/10.31026/j.eng.2020.07.13.

Seimetz, M., 2009. High-Order Modulation for Optical Fiber Transmission. Springer, Berlin, Germany.

Sharma, R., Dewra, S., and Rani, A., 2016. Performance analysis of hybrid PON (WDM-TDM) with equal and unequal channel spacing. Journal of Optical Communications, 37,pp. 1-4.https://doi.org/10.1515/joc-2015-0055.

Shbair, W., and El Nahal, F., 2019. Coherent passive optical network technology for 5G. 2019 IEEE 7th Palestinian International Conference on Electrical and Computer Engineering (PICECE),pp. 1-4.https://doi.org/10.1109/PICECE.2019.8747183.

Sousa, Ivo., Sousa, Nuno., Queluz, Maria Paula., and Rodrigues, António. 2020. Fronthaul design for wireless networks. Applied Sciences, 10,pp. 2-10.https://www.mdpi.com/2076-3417/10/14/4754#.

Syed, S., Hussain, A., Qureshi, M., and Khawaja, W., 2020. Towards the shifting of 5G front haul traffic on passive optical network. Wireless Personal Communications, 112, pp. 1-11. https://doi.org/10.1007/s11277-020-07115-6.

Ullah, R., Ullah, S., Imtiaz, W., Khan, J., Shah, P., Kamran, M., Ren, J., and Chen, S., 2023. High-capacity free space optics-based passive optical network for 5G front-haul deployment. Photonics, 10,pp. 1-13. https://doi.org/10.3390/photonics10101073.

Wey, J., Luo, Y., and Pfeiffer, T., 2020. 5G wireless transport in a PON context: An overview. IEEE communications standards magazine, 4, pp. 50-56. https://doi.org/10.1109/MCOMSTD.001.1900043.

Xu, Y., Wang, S., and Saleem, A., 2025. Simulative analysis of stimulated Raman scattering effects on WDM-PON based 5G fronthaul networks. Sensors, 25,pp. 3-15.https://doi.org/10.3390/s25103237.

المؤلفات المشابهة

يمكنك أيضاً إبدأ بحثاً متقدماً عن المشابهات لهذا المؤلَّف.