Thermal Buckling Analysis of Laminated Composite Plates Using Four-Variable Refined Plate Theory
محتوى المقالة الرئيسي
الملخص
This paper investigates the thermal buckling of laminated composite plates based on a refined plate theory that incorporates four variables, using hyperbolic and polynomial shear strain functions for the first time to analyze thermal buckling of a laminated plate with all edges simply supported. The proposed shear function incorporates the variation of transverse shear stress over the thickness of the plate in a parabolic form and achieves zero traction on the upper and bottom surfaces of the plate without implementing a shear correction factor. Equations of motion are derived according to the principle of virtual displacement. The analytical solution is carried out using Navier’s solution. The numerical results of the orthotropic properties of both cross-ply and angle-ply laminates are calculated by programming a MATLAB code. In the present study, the influence of changing various design parameters, such as aspect ratio (a/b), orthotropic ratio (E1/E2), thickness ratio (a/h), and thermal expansion coefficient ratio (α2/ α1), for symmetric and antisymmetric laminated composite plates is analyzed. The results are evaluated by the assumption of uniform temperature variation through the plate, which exhibits good agreement for both thick and thin plates compared with previous studies.
##plugins.themes.bootstrap3.displayStats.downloads##
تفاصيل المقالة
القسم
كيفية الاقتباس
المراجع
Abdulrazzaq, M.A., Fenjan, R.M., Ahmed, R.A., Faleh, N.M., 2020. Thermal buckling of nonlocal clamped exponentially graded plate according to a secant function based refined theory. Steel Compos. Struct, 35(1), pp. 147-157. https://doi.org/10.12989/scs.2020.35.1.149.
Anandan, G., Gopalan, V., Natarajan, S., 2022. Thermal buckling of flax fibre reinforced epoxy laminated composite plate using finite element analysis. International Journal for Computational Methods in Engineering Science and Mechanics, 23(3), pp. 219-227. https://doi.org/10.1080/15502287.2021.1948149.
Babu, C.S., Kant, T., 2000. Refined higher order finite element models for thermal buckling of laminated composite and sandwich plates. Journal of Thermal Stresses, 23(2), pp. 111-130. https://doi.org/10.1080/014957300280489.
Bracaglia, F., Masia, R., Pagani, A., Zappino, E., Carrera, E., 2024. Thermal buckling of variable stiffness composite laminates using high order plate finite elements. Composite Structures, 345, P. 118393. https://doi.org/10.1016/j.compstruct.2024.118393.
Daikh, A.A., Bachiri, A., Houari, M.S.A., Tounsi, A., 2020. Size dependent free vibration and buckling of multilayered carbon nanotubes reinforced composite nanoplates in thermal environment. Mechanics Based Design of Structures and Machines, 50(4), pp. 1371-1399. https://doi.org/10.1080/15397734.2020.1752232.
Devarajan, B., Kapania, R.K., 2022. Analyzing thermal buckling in curvilinearly stiffened composite plates with arbitrary shaped cutouts using isogeometric level set method. Aerospace Science and Technology, 121, P. 107350. https://doi.org/10.1016/j.ast.2022.107350.
Ebrahimi, F., Nopour, R., Dabbagh, A., 2021. Effect of viscoelastic properties of polymer and wavy shape of the CNTs on the vibrational behaviors of CNT/glass fiber/polymer plates. Engineering with Computers, 38(S5), pp. 4113-4126. https://doi.org/10.1007/s00366-021-01387-7.
Elsisi, A., Abdel-Monsef, S., Salim, H., 2025. Artificial Intelligence in the Design and Optimization of Laminated FRP Composites: A Review of Methodologies and Applications. Journal of Composites Science, 9(12), P. 654. https://doi.org/10.3390/jcs9120654.
Hajlaoui, A., Dammak, F., 2022. A modified first shear deformation theory for three-dimensional thermal post-buckling analysis of FGM plates. Meccanica, 57(2), pp. 337-353. https://doi.org/10.1007/s11012-021-01427-y.
Hashim, H.A., Sadiq, I.A., 2021. A five-variable refined plate theory for thermal buckling analysis of composite plates. Compos. Mater. Eng, 3(2), pp. 135-155. https://doi.org/10.12989/cme.2021.3.2.135.
Kada, D., Abdelouahed, T., 2022. A new refined hyperbolic shear deformation theory for laminated composite spherical shells. Structural engineering and mechanics: An international journal, 84(6), pp. 707-722. https://doi.org/10.12989/sem.2022.84.6.707.
Kareem, M.G., 2024. Thermal buckling analysis for hybrid and composite laminated plate by using new displacement function. Open Engineering, 14(1), https://doi.org/10.1515/eng-2022-0597
Khandan, R., Noroozi, S., Sewell, P., Vinney, J., 2012. The development of laminated composite plate theories: a review. Journal of Materials Science, 47(16), pp. 5901-5910. https://doi.org/10.1007/s10853-012-6329-y.
Lee, J., 1997. Thermally induced buckling of laminated composites by a layerwise theory. Computers & Structures, 65(6), pp. 917-922. https://doi.org/10.1016/S0045-7949(96)00232-5.
Li, D., Zhu, H., Gong, X., 2021. Buckling analysis of functionally graded sandwich plates under both mechanical and thermal loads. Materials, 14(23), P. 7194. https://doi.org/10.3390/ma14237194.
Ma, R., Jin, Q., 2022. Stability of functionally graded graphene-reinforced composite laminated thick plates in thermal environment. Acta Mechanica, 233(10), pp. 3977-3996. https://doi.org/10.1007/s00707-022-03300-9.
Majeed, W.I., Sadiq, I.A., 2022. Thermal buckling of laminated plates using modified Mantari function. J Mech Eng, 19(3), pp. 205-220.
Majeed, W.I., Sadiq, I.A., 2025. Buckling Analysis of Composites Plates Using Four Variable Refined Plate Theory. Revue des Composites et des Materiaux Avances, 35(3), P. 567. https://doi.org/10.18280/rcma.350317.
Matsunaga, H., 2006. Thermal buckling of angle-ply laminated composite and sandwich plates according to a global higher-order deformation theory. Composite Structures, 72(2), pp. 177-192. https://doi.org/10.1016/j.compstruct.2004.11.016.
Mehditabar, A., Ansari Sadrabadi, S., Walker, J., 2023. Thermal buckling analysis of a functionally graded microshell based on higher-order shear deformation and modified couple stress theories. Mechanics Based Design of Structures and Machines, 51(5), pp. 2812-2830. https://doi.org/10.1080/15397734.2021.1908145.
Miglani, J., Devarajan, B., Kapania, R.K., 2022. Isogeometric thermal buckling and sensitivity analysis of periodically supported laminated composite beams. AIAA Journal, 60(5), pp. 3215-3224. https://doi.org/10.2514/1.J060814.
Moradi Haghighi, S., Alibeigloo, A., 2023. Thermal buckling and vibrational analysis of carbon nanotube reinforced rectangular composite plates based on third-order shear deformation theory. Journal of Engineering Mechanics, 149(6), P. 04023026. https://doi.org/10.1061/JENMDT.EMENG-6875.
Nguyen, T.-K., Thai, H.-T., Vo, T.P., 2020. A novel general higher-order shear deformation theory for static, vibration and thermal buckling analysis of the functionally graded plates. Journal of Thermal Stresses, 44(3), pp. 377-394. https://doi.org/10.1080/01495739.2020.1869127.
Noor, A.K., Burton, W.S., 1992. Three-dimensional solutions for thermal buckling of multilayered anisotropic plates. Journal of Engineering Mechanics, 118(4), pp. 683-701. https://doi.org/10.1061/(ASCE)0733-9399(1992)118:4(683).
Odeh, A., Al-Shugaa, M.A., Al-Gahtani, H.J., Mukhtar, F., 2024. Analysis of laminated composite plates: a comprehensive bibliometric review. Buildings, 14(6), pp. 1574. https://doi.org/10.3390/buildings14061574.
Qian, H., Wang, Z., Lu, C., Cai, D., Yang, Y., 2024. Thermal analysis for laminated plates with arbitrary supports under non-uniform temperature boundary conditions. Thin-Walled Structures, 197, P. 111595. https://doi.org/10.1016/j.tws.2024.111595.
Reddy, J.N., 2003. Mechanics of laminated composite plates and shells: theory and analysis. CRC press..
Saad, M., Hadji, L., 2022. Thermal buckling analysis of porous FGM plates. Materials Today: Proceedings, 53, pp. 196-201. https://doi.org/10.1016/j.matpr.2021.12.550.
Shu, X., Sun, L., 1994. Thermomechanical buckling of laminated composite plates with higher-order transverse shear deformation. Computers & Structures, 53(1), pp. 1-7. https://doi.org/10.1016/0045-7949(94)90123-6.
Torabi, J., Ansari, R., Hassani, R., 2019. Numerical study on the thermal buckling analysis of CNT-reinforced composite plates with different shapes based on the higher-order shear deformation theory. European Journal of Mechanics-A/Solids, 73, pp. 144-160. https://doi.org/10.1016/j.euromechsol.2018.07.009.
Varelis, D., Saravanos, D.A., 2022. A coupled nonlinear plate finite element for thermal buckling and postbuckling of piezoelectric composite plates including thermo-electro-mechanical effects. Journal of Thermal Stresses, 45(1), pp. 30-50. https://doi.org/10.1080/01495739.2021.2005498.
Xing, Y., Wang, Z., 2017. Closed form solutions for thermal buckling of functionally graded rectangular thin plates. Applied Sciences, 7(12), P. 1256. https://doi.org/10.3390/app7121256.
Xue, Y., Zhang, Y., Li, J., 2021. Optimization of thermal buckling control for composite laminates with PFRC actuators using trigonometric shear deformation theory. Journal of Mechanical Science and Technology, 35(1), pp. 257-266. https://doi.org/10.1007/s12206-020-1225-x.
Yahea, H.T., Majeed, W.I., 2021. Thermal buckling of laminated composite plates using a simple four variable plate theory. Journal of Engineering, 27(9), pp. 1-19. https://doi.org/10.31026/j.eng.2021.09.01.
Yang, X., Fei, Q., Wu, S., Li, Y., 2020. Thermal buckling and dynamic characteristics of composite plates under pressure load. Journal of Mechanical Science and Technology, 34(8), pp. 3117-3125. https://doi.org/10.1007/s12206-020-0702-6.
