Design and Implementation of a Microstrip Six-Port Reflectometer (SPR) with Enhanced Bandwidth

Main Article Content

Nadine Adnan Shaaban
Ghassan Nihad Jawad

Abstract

A compact microstrip six-port reflectometer (SPR) with extended bandwidth is proposed in this paper. The design is based on using 16-dB multi-section coupled line directional couplers and a multi-section 3-dB Wilkinson power divider operating from 1 to 6 GHz. The proposed SPR employs only two calibration standards: a matched load and an open load. As compared to other dielectric substrates, fabricating the proposed SPR involves using a low-cost (FR4) substrate. A novel algorithm is also proposed to estimate the complex reflection coefficient over the frequency ranges at which the standard performance of the circuit components is not fully satisfied. The new algorithm is based on the circles’ intersection points, which have been derived from basic SPR equations, to estimate the complex reflection coefficient. To validate the SPR performance, a multiband microstrip patch antenna has been measured and the resulted reflection coefficient is compared with those obtained using a vector network analyzer (VNA). Results show that the proposed SPR provides a good estimation of the complex reflection coefficient within the frequency range of 1 GHz to 8 GHz. Owing to its compact size and ease of fabrication, the proposed reflectometer is suitable for various microwave broadband applications.

Article Details

How to Cite
“Design and Implementation of a Microstrip Six-Port Reflectometer (SPR) with Enhanced Bandwidth” (2024) Journal of Engineering, 30(07), pp. 125–143. doi:10.31026/j.eng.2024.07.08.
Section
Articles

How to Cite

“Design and Implementation of a Microstrip Six-Port Reflectometer (SPR) with Enhanced Bandwidth” (2024) Journal of Engineering, 30(07), pp. 125–143. doi:10.31026/j.eng.2024.07.08.

Publication Dates

Received

2023-11-12

Accepted

2024-02-25

Published Online First

2024-07-01

References

Abbass, S.J. and Abdulateef, E.F.M.R., 2012. Finite element analysis of human and artificial articular cartilage. Journal of Engineering, 18(4), pp. 443-458. Doi:10.31026/j.eng.2012.04.06.

Aishah, S., Fareq, M., Cheng, E., Lee, K., Tan, W., Afendi, M., Shahriman, A., Nasir, N. M., Tan, W. and Syahirah, K., 2015. Study on moisture content in animal fats using Six-Port Reflectometer (SPR). 2015 2nd International Conference on Biomedical Engineering (ICoBE). IEEE, pp. 1-5. Doi:10.1109/ICoBE.2015.7235920.

Al-Jumaily, A. and Al-Ammri, A. S., 2009. Analysis of wave propagation in detection of aorta dieses using lumps analysis. Al-Khwarizmi Engineering Journal, 5(3), pp. 16-22. https://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/566.

Ali, H. O. and Al-Hindawi, A. M., 2021. A Ultra-broadband Thin metamaterial absorber for Ku and K bands applications. Journal of Engineering, 27(5), pp. 1-16. Doi:10.31026/j.eng.2021.05.01.

Bialkowski, M. E., Abbosh, A. M. and Seman, N., 2007. Compact microwave six-port vector voltmeters for ultra-wideband applications. IEEE Transactions on Microwave Theory and Techniques, 55(10), pp. 2216-2223. Doi:10.1109/TMTT.2007.906539.

Bilik, V., 2002. Six-port measurement technique: Principles, impact, applications. Invited paper at the International Conference Radioelektronika. https://www.yumpu.com/en/document/view/5389511/six-port-measurement-technique-s-team-lab.

Brunetti, L., 1990. Geometrical estimator use in six-port reflectometer study. Conference on Precision Electromagnetic Measurements. IEEE, pp. 402-403. Doi:10.1109/CPEM.1990.110079.

Brunetti, L., Fornero, C. and Rietto, G., 1989. Six-port reflectometer: influence of Q-points position in Gamma-plane on sidearm power detector error propagation. IEEE Transactions on Instrumentation and Measurement, 38(2), pp. 484-487. Doi:10.1109/19.192332.

Dietrich, F., Wei, M.-D. and Negra, R., 2018. Low-Cost, Wideband multiport reflectometer in single-layer structure for accurate high VSWR measurement. 2018 91st ARFTG Microwave Measurement Conference (ARFTG). IEEE, pp. 1-4. Doi:10.1109/ARFTG.2018.8423819.

Engen, G. F., 1977a. An improved circuit for implementing the six-port technique of microwave measurements. IEEE Transactions on microwave theory and techniques, 25(12), pp. 1080-1083. Doi:10.1109/TMTT.1977.1129278.

Engen, G. F., 1977b. The six-port reflectometer: An alternative network analyzer. IEEE Transactions on microwave theory and techniques, 25(12), pp. 1075-1080. Doi:10.1109/TMTT.1977.1129277.

Engen, G. F., 1992. Microwave circuit theory and foundations of microwave metrology, IET. https://books.google.iq/books/about/Microwave_Circuit_Theory_and_Foundations.html?id=-SL-oDSRQ7cC&redir_esc=y.

Ghannouchi, F. M. and Mohammadi, A., 2009. The six-port technique with microwave and wireless applications, Artech House. https://books.google.iq/books?id=-t0fu4zpMh0C&printsec=copyright&redir_esc=y#v=onepage&q&f=false.

Ghosh, D. and Kumar, G., 2017. Six-port reflectometer using edge-coupled microstrip couplers. IEEE Microwave and Wireless Components Letters, 27(3), pp. 245-247. Doi:10.1109/LMWC.2017.2661708.

Haddadi, K., Loyez, C., Clavier, L., Pomorski, D. and Lallemand, S., 2018. Six-port reflectometer in WR15 metallic waveguide for free-space sensing applications. 2018 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet). IEEE, pp. 80-83. Doi:10.1109/WISNET.2018.8311570.

Haddadi, K., Wang, M., Glay, D. and Lasri, T., 2008. Ultra wide-band four-port reflectometer using only two quadratic detectors. 2008 IEEE MTT-S International Microwave Symposium Digest. IEEE, pp. 379-382. Doi:10.1109/MWSYM.2008.4633182.

Hassan, A. and Abbas, O., 2018. Design of a wide band six port reflectometer using broadside coupled lines. Microwave and Optical Technology Letters, 60(9), pp. 2101-2103. Doi:10.1002/mop.31310.

Hathal, M. S., Salih, S. S. and Hasan, A. H., 2021. Ultra-wideband featuring enhanced delay and sum algorithm and oriented for detecting early stage breast cancer. Progress In Electromagnetics Research M, 100, pp. 141-150. Doi:10.2528/PIERM20012804.

Issa, R. S., Almamori, A. and Al Hamdani, H., 2022. Broadband reflectarray design for wireless applications. 2022 International Conference on Electrical, Computer and Energy Technologies (ICECET). IEEE, pp. 1-4. Doi:10.1109/ICECET55527.2022.9872838.

Jawad, G. N. and Akbar, M. F., 2021. IFFT-based microwave non-destructive testing for delamination detection and thickness estimation. IEEE Access, 9, pp. 98561-98572. Doi:10.1109/ACCESS.2021.3095105.

Lin, T., Gu, S. and Lasri, T., 2017. 2-20 GHz non-uniform coupler for six-port reflectometer. 2017 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet). IEEE, pp. 15-18. Doi:10.1109/WISNET.2017.7929775.

Mishra, B., Rahman, A., Shaw, S., Mohd, M., Mondal, S. and Sarkar, P., 2014. Design of an ultra-wideband Wilkinson power divider. 2014 First International Conference on Automation, Control, Energy and Systems (ACES). IEEE, pp. 1-4. Doi:10.1109/ACES.2014.6807987.

Mohammed, B. S., Ahmed, E. S. and Sateaa, S. D., 2014. The mutual Interaction effects between Array Antenna Parameters and Receiving Signals Bandwidth. Al-Khwarizmi Engineering Journal, 10(1), pp. 83-91. https://alkej.uobaghdad.edu.iq/index.php/alkej/article/view/193.

Odrobina, S., Staszek, K., Wincza, K. and Gruszczynski, S., 2017. Measurement uncertainty analysis and design of a broadband four‐port reflectometer. IET Microwaves, Antennas & Propagation, 11(15), pp. 2162-2167. Doi:10.1049/iet-map.2017.0435.

Odrobina, S., Staszek, K., Wincza, K. and Gruszczynski, S., 2018. Wideband six-port reflectometer. 2018 14th International Conference on Advanced Trends in Radioelecrtronics, Telecommunications and Computer Engineering (TCSET). IEEE, pp. 597-601. Doi:10.1109/TCSET.2018.8336273.

Peng, S., Li, Z., Jing, R., Zhu, H. and Hong, T., 2023. Quasi-optimal and optimal six-port reflectometers using coupled-line directional couplers. IEEE Transactions on Instrumentation and Measurement. Doi:10.1109/TIM.2023.3317382.

Pozar, D. M., 2012. Microwave engineering. Fourth Editions, University of Massachusetts at Amherst, John Wiley & Sons, Inc, pp. 26-30. https://www.wiley.com/en-us/Microwave+Engineering%2C+4th+Edition-p-9780470631553.

Seman, N., Bialkowski, M. E. and Khor, W. C., 2008. Fully integrated UWB microwave reflectometer in multi-layer microstrip-slot technology. 2008 Asia-Pacific Microwave Conference. IEEE, pp. 1-4. Doi:10.1109/APMC.2008.4957894.

Shrifan, N. H., Jawad, G. N., Isa, N. A. M. and Akbar, M. F., 2020. Microwave nondestructive testing for defect detection in composites based on K-means clustering algorithm. IEEE Access, 9, pp. 4820-4828. Doi:10.1109/ACCESS.2020.3048147.

Staszek, K., 2022. Six-Port reflectometer insensitive to power detectors’ impedance mismatch. IEEE Access, 10, pp. 89072-89082. Doi:10.1109/ACCESS.2022.3201126.

Staszek, K., Gruszczynski, S. and Wincza, K., 2013. Design and accuracy analysis of a broadband six‐port reflectometer utilizing coupled‐line directional couplers. Microwave and Optical Technology Letters, 55(7), pp. 1485-1490. http://dx.doi.org/10.1002/mop.27630.

Staszek, K., Gruszczynski, S. and Wincza, K., 2016. Six-port reflectometer providing enhanced power distribution. IEEE Transactions on Microwave Theory and Techniques, 64(3), pp. 939-951. Doi:10.1109/TMTT.2016.2518681.

Staszek, K., Gruszczynski, S. and Wincza, K., 2017a. Ultra-wideband dual-line multiprobe reflectometer. IEEE Transactions on Microwave Theory and Techniques, 65(4), pp. 1324-1333. Doi:10.1109/TMTT.2016.2638422.

Staszek, K., Sorocki, J., Wincza, K. and Gruszczyński, S., 2017b. Six-port reflectometer with tunable parameters ensuring measurement accuracy enhancement. 2017 IEEE Topical Conference on Wireless Sensors and Sensor Networks (WiSNet). IEEE, pp. 26-29. Doi:10.1109/WISNET.2017.7878747.

Steer, M., 2019. Microwave and RF design, NC State University. https://uncpress.org/book/9781469656885/fundamentals-of-microwave-and-rf-design/.

Yeo, S. and Lee, K., 1990. Improvements in design of six-port reflectometer comprising symmetrical five-port waveguide junction and directional coupler. IEEE transactions on instrumentation and measurement, 39(1), pp. 184-188. Doi:10.1109/19.50441.

Zoughi, R., 2000. Microwave non-destructive testing and evaluation principles, Springer Science & Business Media. https://link.springer.com/book/10.1007/978-94-015-1303-6.

Similar Articles

You may also start an advanced similarity search for this article.