An Overview of How the Petrophysical Properties of Rock Influenced After Being Exposed to Cryogenic Fluid
Main Article Content
Abstract
Exposure to cryogenic liquids can significantly impact the petrophysical properties of rock, affecting its density, porosity, permeability, and elastic properties. These effects can have important implications for various applications, including oil and gas production and carbon sequestration. Cryogenic liquid fracturing is a promising alternative to traditional hydraulic fracturing for exploiting unconventional oil and gas resources and geothermal energy. This technology offers several advantages over traditional hydraulic fracturing, including reduced water consumption, reduced formation damage, and a reduced risk of flow-back fluid contamination. In this study, an updated review of recent studies demonstrates how the thermal shock caused by the cryogenic liquid during the fracturing process substantially affects the rock's physical properties. Additionally, changes in permeability, porosity, and pore structure brought about by cryogenic treatments are highlighted. This work aims to draw attention to the studies that deal with the effect of thermal shock on rock petrophysical properties and establish the ideal conditions for employing cryogenic liquids in these contexts. Simulation studies, laboratory trials, and field application cases have been undertaken to assess the efficacy of cryogenic liquid fracturing technology. These investigations have provided important insights into the physical and mechanical impacts of thermal shock on rock and the performance of cryogenic liquid fracturing in real-world situations.
Article received: 16/02/2023
Article accepted: 05/07/2023
Article published: 01/11/2023
Article Details
Section
How to Cite
References
Alameedy, U., 2023. Accurate petrophysical interpretation of carbonate using the elemental capture spectroscopy (ECS). Iraqi Journal of Chemical and Petroleum Engineering, 24(3), pp.125–131. Doi:10.31699/IJCPE.2023.3.12.
Alameedy, U. and A.Alrazzaq, A.A.A., 2022. Wormholes models for the optimum matrix acidizing in Mi4 Unit-Ahdeb Oil Field. Journal of Engineering, 28(12), pp.34–55. Doi:10.31026/j.eng.2022.12.03.
Alameedy, U., Al-Haleem, A., Al-Saedi, A., Kadhim, H. and Khan, D., 2023a. An experimental study of the effects of matrix acidising on the petrophysical characteristics of carbonate formation. Materials Today: Proceedings. Doi:10.1016/j.matpr.2023.04.128.
Alameedy, U., Almomen, A. and Abd, N., 2023b. Evaluating machine learning techniques for carbonate formation permeability prediction using well log data. Iraqi Geological Journal, 56(1D), pp.175–187. Doi:10.46717/igj.56.1D.14ms-2023-4-23.
Alameedy, U., Farman, G. and Al-Tamemi, H., 2023c. Mineral inversion approach to improve ahdeb oil field’s mineral classification. Iraqi Geological Journal, 56(2B), pp.102–113. Doi:10.46717/igj.56.2B.8ms-2023-8-17.
Alameedy, U., Fatah, A., Abbas, A.K. and Al-Yaseri, A., 2023d. Matrix acidizing in carbonate rocks and the impact on geomechanical properties: A review. Fuel, 349, p.128586. Doi:10.1016/j.fuel.2023.128586.
Alharith, A., Batarseh, S., San Roman Alerigi, D. and Asiri, W., 2020. Overview of recent waterless stimulation technologies. In: Day 3 Wed, November 11, 2020. SPE. Doi:10.2118/202762-MS.
Almalichy, Abdulameer Turzo, Z. and Alameedy, U., 2022. Carbonate rock matrix acidizing: A review of acid systems and reaction mechanisms. In: XXV. Tavaszi Szél Konferencia, DOSZ, Budapest, Hungary. Budapest, Hungary: DOSZ. pp. 303–313.
Almubarak, M., Almubarak, T., Ng, J.H., Hernandez, J. and Nasr-El-Din, H., 2020. recent advances in waterless fracturing fluids: A review. In: Day 1 Mon, November 09, . SPE. Doi:10.2118/202981-MS.
Ayala, E., Rivera, D., Ronceros, J., Vinces, N. and Ronceros, G., 2023. Design of a cryogenic duplex pressure-swirl atomizer through cfds for the cold conservation of marine products. Fluids, 8(10), p.271. Doi:10.3390/fluids8100271.
Bai, X., Wu, C., Liu, X. and Li, Y., 2019. Analysis of the tempo‐spatial effects of hydraulic fracturing by drilling through underground coal mine strata on desorption characteristics. Energy Science & Engineering, 7(1), pp.170–178. Doi:10.1002/ese3.267.
Beck, G., Nolen, C., Hoopes, K., Krouse, C., Poerner, M., Phatak, A. and Verma, S., 2017. Laboratory evaluation of a natural gas–based foamed fracturing fluid. In: Day 2 Tue, October 10, 2017. SPE. Doi:10.2118/187199-MS.
Beier, N.A. and Sego, D.C., 2009. Cyclic freeze–thaw to enhance the stability of coal tailings. Cold Regions Science and Technology, 55(3), pp.278–285. Doi:10.1016/j.coldregions.2008.08.006.
Butt, A., 2019. Ultrasonic velocity tomography method for damage evaluation in rocks.
Cai, C., Li, G., Huang, Z. and Chi, H., 2015a. A waterless fracturing treatment: liquid nitrogen fracturing and its application prospect. ‘Proceedings’ of ‘Oil Gas Scientific Research Projects’ Institute, SOCAR, (3), pp.35–40. Doi:10.5510/OGP20150300250.
Cai, C., Li, G., Huang, Z., Shen, Z., Tian, S. and Wei, J., 2014. Experimental study of the effect of liquid nitrogen cooling on rock pore structure. Journal of Natural Gas Science and Engineering, 21, pp.507–517. Doi:10.1016/j.jngse.2014.08.026.
Cai, C., Li, G., Huang, Z., Tian, S., Shen, Z. and Fu, X., 2015b. Experiment of coal damage due to super-cooling with liquid nitrogen. Journal of Natural Gas Science and Engineering, 22, pp.42–48. Doi:10.1016/j.jngse.2014.11.016.
Carpenter, C., 2017. Cryogenic-fracturing treatment of synthetic-rock with liquid Nitrogen. Journal of Petroleum Technology, 69(06), pp.70–71. Doi:10.2118/0617-0070-JPT.
Cong, R., Yang, R., Wang, H., Li, G., Xia, Z., Hong, C., Wen, H. and Chen, J., 2022. Supercritical CO2 shock fracturing on coal: experimental investigation on fracture morphology and pressure characteristics. ARMA. Doi:10.56952/ARMA-2022-0182.
Corbett, P.W.M. and Potter, D., 2004. Petrotyping: A basemap and atlas for navigating through permeability and porosity data for reservoir comparison and permeability prediction. Paper SCA2004-30 presented at the International Symposium of the Society of Core Analysts, (January 2004), pp.5–9.
Fu, C. and Liu, N., 2019. Waterless fluids in hydraulic fracturing – A review. Journal of Natural Gas Science and Engineering, 67, pp.214–224. Doi:10.1016/j.jngse.2019.05.001.
Gala, D., AlTammar, M.J. and Sharma, M.M., 2023. Field-Scale Modeling of Fracturing with Slickwater, N2, CO2 and Foams – A Fundamental Investigation. In: All Days. ARMA. Doi:10.56952/ARMA-2023-0142.
Gaurina-Međimurec, N., Brkić, V., Topolovec, M. and Mijić, P., 2021. Fracturing fluids and their application in the Republic of Croatia. Applied Sciences, 11(6), p.2807. Doi:10.3390/app11062807.
Grundmann, S.R., Rodvelt, G.D., Dials, G.A. and Allen, R.E., 1998. Cryogenic Nitrogen as a hydraulic fracturing fluid in the devonian shale. SPE. Doi:10.2118/51067-MS.
Han, S., Gao, Q., Yang, J., Li, Y. and Cheng, Y., 2022. Mesomechanics-based crack evolution modeling in shale reservoirs stimulated by cryogenic liquid Nitrogen. ARMA. Doi:10.56952/ARMA-2022-0066.
Han, S., Yan, X., Li, L., Wang, L., Yang, L., Wang, R., Gao, Q., Yang, J. and Shi, X., 2023. numerical modeling of cracking behaviors of coal reservoirs subjected to cryogenic shock. ARMA. Doi:10.56952/ARMA-2023-0466.
Huang, P., Huang, Z., Yang, Z., Wu, X., Li, R. and Zhang, S., 2019. An innovative experimental equipment for liquid nitrogen fracturing. Review of Scientific Instruments, 90(3), p.036104. Doi:10.1063/1.5086448.
Huang, Z., Zhang, S., Yang, R., Wu, X., Li, R., Zhang, H. and Hung, P., 2020. A review of liquid nitrogen fracturing technology. Fuel, 266(August 2019), p.117040. Doi:10.1016/j.fuel.2020.117040.
Jiang, L., Cheng, Y., Han, Z., Gao, Q., Yan, C., Wang, G., Wang, H. and Fu, L., 2018. Experimental investigation on pore characteristics and carrying capacity of longmaxi shale under liquid nitrogen freezing and thawing. In: IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. Society of Petroleum Engineers. Doi:10.2118/191111-MS.
Jin, X., Gao, J., Su, Chengdong and Liu, J., 2019. Influence of liquid nitrogen cryotherapy on mechanic properties of coal and constitutive model study. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 41(19), pp.2364–2376. Doi:10.1080/15567036.2018.1563245.
JPT staff, 1998. Field applications of cryogenic nitrogen as a hydraulic-fracturing fluid. Journal of Petroleum Technology, 50(03), pp.38–39. Doi:10.2118/0398-0038-JPT.
Kalam, S., Afagwu, C., Al Jaberi, J., Siddig, O.M., Tariq, Z., Mahmoud, M. and Abdulraheem, A., 2021. A review on non-aqueous fracturing techniques in unconventional reservoirs. Journal of Natural Gas Science and Engineering, 95, p.104223. Doi:10.1016/j.jngse.2021.104223.
Khalil, R. and Emadi, H., 2020. An experimental investigation of cryogenic treatments effects on porosity, permeability, and mechanical properties of Marcellus downhole core samples. Journal of Natural Gas Science and Engineering, 81, p.103422. Doi:10.1016/j.jngse.2020.103422.
Kim, K., Kemeny, J. and Nickerson, M., 2014. Effect of rapid thermal cooling on mechanical rock properties. Rock Mechanics and Rock Engineering, 47(6), pp.2005–2019. Doi:10.1007/s00603-013-0523-3.
Li, C., Nie, B., Feng, Z., Wang, Q., Yao, H. and Cheng, C., 2022. Experimental Study of the Influence of Moisture Content on the Pore Structure and Permeability of Anthracite Treated by Liquid Nitrogen Freeze–Thaw. ACS Omega, 7(9), pp.7777–7790. Doi:10.1021/acsomega.1c06631.
Li, R., Zhang, C. and Huang, Z., 2020. Quenching and rewetting of rock in liquid nitrogen: Characterizing heat transfer and surface effects. International Journal of Thermal Sciences, 148, p.106161. Doi:10.1016/j.ijthermalsci.2019.106161.
Lin, H., Li, J., Yan, M., Li, S., Qin, L. and Zhang, Y., 2020. Damage caused by freeze‐thaw treatment with liquid nitrogen on pore and fracture structures in a water‐bearing coal mass. Energy Science & Engineering, 8(5), pp.1667–1680. Doi:10.1002/ese3.623.
Longinos, S., Tuleugaliyev, M., Serik, A., Wang, L. and Hazlett, R., 2022a. Laboratory investigation on cryogenic fracturing of coal rocks: An experimental study in Kazakhstan. In: Day 3 Thu, November 17, 2022. SPE. Doi:10.2118/212127-MS.
Longinos, S., Wang, L., Loskutova, A., Zhang, D. and Hazlett, R., 2022b. Cyclic LN2 treatment of coal samples from coal basin in kazakhstan. In: Day 4 Thu, June 09, 2022. SPE. Doi:10.2118/209697-MS.
McPhee, C., Reed, J. and Zubizarreta, I., 2015. Core Analysis A Best Practice Guide. [online] Doi:10.1016/B978-0-444-63533-4.09989-3.
Memon, K.R., Mahesar, A.A., Ali, M., Tunio, A.H., Mohanty, U.S., Akhondzadeh, H., Awan, F.U.R., Iglauer, S. and Keshavarz, A., 2020. Influence of cryogenic liquid nitrogen on petro-physical characteristics of mancos shale: an experimental investigation. Energy & Fuels, 34(2), pp.2160–2168. Doi:10.1021/acs.energyfuels.9b03700.
Qin, L., Zhai, C., Liu, S., Xu, J., Wu, S. and Dong, R., 2018. Fractal dimensions of low rank coal subjected to liquid nitrogen freeze-thaw based on nuclear magnetic resonance applied for coalbed methane recovery. Powder Technology, 325, pp.11–20. Doi:10.1016/j.powtec.2017.11.027.
Qin, L., Zhai, C., Liu, S., Xu, J., Yu, G. and Sun, Y., 2017. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw – A nuclear magnetic resonance investigation. Fuel, 194, pp.102–114. Doi:10.1016/j.fuel.2017.01.005.
Qu, H., Li, Z., Liu, Y., Zeng, Z. and Liu, X., 2023. Study on the fracturing pattern and damage characteristics of deep shale by liquid nitrogen fracturing. In: All Days. ARMA. Doi:10.56952/ARMA-2023-0375.
Ramezanian, M. and Emadi, H., 2021. Effect of cryogenic treatment thermal shock on rock dynamic elastic properties and permeability of wolfcamp core samples – An experimental study. In: Day 1 Tue, April 20, 2021. SPE. Doi:10.2118/200823-MS.
Rassenfoss, S., 2013. In search of the waterless fracture. Journal of Petroleum Technology, 65(06), pp.46–54. Doi:10.2118/0613-0046-JPT.
Sahu, Q.S., Alnakhli, A.R. and Kalgaonkar, R.A., 2022. thermal impact on sandstone’s physical and mechanical properties. In: All Days. ARMA. Doi:10.56952/IGS-2022-139.
Shirani, M., Mathes, M. and Härkegard, G., 2010. Three dimensional characterization of defects using x-ray computed tomography. 18th European Conference on Fracture: Fracture of Materials and Structures from Micro to Macro Scale, pp.1–6.
Song, H., Liang, Z., Chen, Z., Gholizadeh Doonechaly, N., Arns, J.Y. and S. Rahman, S., 2016. Thermal-stress induced fracture propagation by cold fluid - an improved hydraulic fracturing treatment for unconventional gas reservoirs. In: Day 1 Wed, August 24, 2016. SPE. Doi:10.2118/181799-MS.
Soykan, U., Cetin, S. And Yahsi, U., 2023. Detailed investigation on the insulation and permeability characteristics of rigid polyurethane foam loaded with micron-sized Turkey feather powder depending on the free volume change. Cellular Polymers, 42(5–6), pp.204–225. Doi:10.1177/02624893231204773.
State, A.I., Polytechnic, A.I. and Kingdom, U., 2010. Determination of thermal and physical properties of sediments in the NIger delta , using wire line log data. Library, 1(4), pp.48–55.
Sun, Y., Wu, X., Zou, W., Huang, Z., Xie, Z., Li, J. and Long, T., 2023. Fracture propagation behaviors of high-temperature granites during liquid nitrogen fracturing with multi-branch wells. In: All Days. ARMA. Doi:10.56952/ARMA-2023-0419.
Thiyagarajan, S.R., Emadi, H., Altawati, F., Soliman, M. and Watson, M., 2023. Investigating effects of cryogenic treatment on physical and mechanical properties of geothermal formation samples – an experimental study. ARMA. Doi:10.56952/ARMA-2023-0025.
Tudisco, E., 2013. Development and application of time-lapse ultrasonic tomography for laboratory characterization of localized deformation in hard soils/soft rocks.
Wang, H.F., Bonner, B.P., Carlson, S.R., Kowallis, B.J. and Heard, H.C., 1989. Thermal stress cracking in granite. Journal of Geophysical Research, 94(B2), p.1745. Doi:10.1029/JB094iB02p01745.
Wang, J., Zhang, C., Deng, Y. and Zhang, P., 2022a. A review of research on the effect of temperature on the properties of polyurethane foams. polymers, 14(21), p.4586. Doi:10.3390/polym14214586.
Wang, J.-G., Xuan, Z.-Q., Jin, Q., Sun, W.-J., Liang, B. and Yu, Q.-R., 2022b. Mesoscopic structural damage and permeability evolution of Shale subjected to freeze–thaw treatment. Scientific Reports, 12(1), p.2202. Doi:10.1038/s41598-022-06263-y.
Wang, L., Xue, Y., Cao, Z., Wu, X., Dang, F. and Liu, R., 2023a. Mechanical properties of high-temperature granite under liquid nitrogen cooling. Geofluids, 2023, pp.1–23. Doi:10.1155/2023/3819799.
Wang, L., Yao, B., Cha, M., Alqahtani, N.B., Patterson, T.W., Kneafsey, T.J., Miskimins, J.L., Yin, X. and Wu, Y.-S., 2016. Waterless fracturing technologies for unconventional reservoirs-opportunities for liquid nitrogen. Journal of Natural Gas Science and Engineering, 35, pp.160–174. Doi:10.1016/j.jngse.2016.08.052.
Wang, L., Zhang, W., Cao, Z., Xue, Y., Liu, J., Zhou, Y., Duan, C. and Chen, T., 2023b. Effect of weakening characteristics of mechanical properties of granite under the action of liquid nitrogen. Frontiers in Ecology and Evolution, 11. Doi:10.3389/fevo.2023.1249617.
Winterfeld, P.H., Yao, B. and Wu, Y.S., 2023. Experimental and Simulation Studies of Cryogenic Effects in the Near-Wellbore Region. In: Day 3 Thu, March 30, 2023. SPE. Doi:10.2118/212233-MS.
Wu, X., Huang, Z., Song, H., Zhang, S., Cheng, Z., Li, R., Wen, H., Huang, P. and Dai, X., 2019. Variations of physical and mechanical properties of heated granite after rapid cooling with liquid nitrogen. Rock Mechanics and Rock Engineering, 52(7), pp.2123–2139. Doi:10.1007/s00603-018-1727-3.
Xu, J., Zhai, C., Liu, S., Qin, L. and Wu, S., 2017. Pore variation of three different metamorphic coals by multiple freezing-thawing cycles of liquid CO2 injection for coalbed methane recovery. Fuel, 208, pp.41–51. Doi:10.1016/j.fuel.2017.07.006.
Yang, R., Hong, C., Huang, Z., Song, X., Zhang, S. and Wen, H., 2019a. Coal breakage using abrasive liquid nitrogen jet and its implications for coalbed methane recovery. Applied Energy, 253, p.113485. Doi:10.1016/j.apenergy.2019.113485.
Yang, R., Hong, C., Huang, Z., Wen, H., Li, X., Huang, P., Liu, W. and Chen, J., 2021. Liquid nitrogen fracturing in boreholes under true triaxial stresses: laboratory investigation on fractures initiation and morphology. SPE Journal, 26(01), pp.135–154. Doi:10.2118/201224-PA.
Yang, R., Hong, C., Wen, H., Huang, Z., Li, G., Lan, T., Wang, H. and Dubinya, N., 2023. cyclic liquid nitrogen fracturing performance on coal with various coal ranks: laboratory investigation and mechanism analysis. SPE Journal, 28(04), pp.1706–1728. Doi:10.2118/214660-PA.
Yang, R., Huang, Z., Shi, Y., Yang, Z. and Huang, P., 2019b. Laboratory investigation on cryogenic fracturing of hot dry rock under triaxial-confining stresses. Geothermics, 79, pp.46–60. Doi:10.1016/j.geothermics.2019.01.008.
Yao, B., Wang, L., Patterson, T., Kneafsey, T.J., Yin, X. and Wu, Y., 2017. Experimental study and modeling of cryogenic fracturing treatment of synthetic rock samples using liquid nitrogen under Tri-Axial Stresses. In: Day 2 Thu, February 16, 2017. SPE. Doi:10.2118/185050-MS.
Zhou, C., Gao, F., Cai, C., Zheng, W. and Huo, L., 2022. Mechanical properties and damage evolution of heated granite subjected to liquid nitrogen cooling. Applied Sciences, 12(20), p.10615. Doi:10.3390/app122010615.