Simulation and Experimental Investigation of Performance and Flow Behavior for Steam Ejector Refrigeration System

Main Article Content

Shakir Jasim
Akram W. Ezzat
Eric Hu

Abstract

The ejector refrigeration system is a desirable choice to reduce energy consumption. A Computational Fluid Dynamics CFD simulation using the ANSYS package was performed to investigate the flow inside the ejector and determine the performance of a small-scale steam ejector. The experimental results showed that at the nozzle throat diameter of 2.6 mm and the evaporator temperature of 10oC, increasing boiler temperature from 110oC to 140oC decreases the entrainment ratio by 66.25%. At the boiler temperature of 120oC, increasing the evaporator temperature from 7.5 to 15 oC increases the entrainment ratio by 65.57%. While at the boiler temperature of 120oC and the evaporator temperature of 10oC, increasing the nozzle throat diameter from 2.4 to 2.8 mm decreases the entrainment ratio by 40%. The numerical results showed that reducing the condenser back pressure or increasing the primary fluid temperature, secondary fluid temperature, and nozzle throat diameter moves the second shock waves in the downstream direction. It could be concluded that the second shock series position detects the ejector operation mode. The ejector runs in critical mode if the second shock series position is close to the diffuser. In contrast, if the second shock series position moves toward the upstream, the ejector runs in subcritical mode.

Article Details

How to Cite
“Simulation and Experimental Investigation of Performance and Flow Behavior for Steam Ejector Refrigeration System” (2023) Journal of Engineering, 29(12), pp. 13–38. doi:10.31026/j.eng.2023.12.02.
Section
Articles
Author Biography

Akram W. Ezzat, Mechanical engineering department, University of Baghdad

 

 

How to Cite

“Simulation and Experimental Investigation of Performance and Flow Behavior for Steam Ejector Refrigeration System” (2023) Journal of Engineering, 29(12), pp. 13–38. doi:10.31026/j.eng.2023.12.02.

Publication Dates

References

Chen, J., 2014. Investigation of vapor ejectors in heat driven ejector refrigeration systems, Doctoral Thesis, Department of Energy Technology, Royal Institute of Technology, Stockholm, Sweden.

Chunnanond K., and Aphornratana S., 2004. Ejectors: applications in refrigeration technology. Renewable and Sustainable Energy Reviews, 8, pp. 129–155. Doi:10.1016/j.rser.2003.10.001

David Scott, Z., Ellache, O.B., and Ouzzane, M., 2008. CFD simulations of a supersonic ejector for use in refrigeration applications. International Refrigeration and Air Conditioning Conference at Purdue, pp. 14-17.

Diogo N.C., 2019. Development of a variable geometry ejector for a solar desalination systems. MSc. thesis, Mechanical Engineering department, University of Porto.

EZZAT Wali, 1980. Optimum working fluids for solar powered Rankine cycle cooling of buildings, Solar Energy, 25, pp. 235-24. Doi:10.1016/0038-092X(80)90330-8.

Ezzat, A.W., and Addaiy, R.M., 2010, Flash evaporation enhancement by electrolysis of saturated water flowing upwards in vertical pipe. Journal of Engineering, 16(3), pp. 5620-5632.

Federico, M., Dmitrii, B., Ilia, M., Nikolay, Z., and Adriano, M., 2016. Condensation in supersonic steam ejectors: comparison of theoretical and numerical models. 9th International Conference on Multiphase Flow, Italy.

Fletcher, C.A., 2013. Computational techniques for fluid dynamics 1: Fundamental and general techniques. Springer, Berlin, Heidelberg.

Galindo J., Dolz V., García L. M., and Alberto P., 2020. Numerical evaluation of a solar-assisted jet-ejector refrigeration system: Screening of environmentally friendly refrigerants. Energy Conversion and Management, 210, 112681. Doi:10.1016/j.enconman.2020.112681

Hart, J.H., 2002. Supersonic ejector simulation and optimisation. Ph.D. thesis, Department of Mechanical Engineering, University of Sheffield September.

Holman J. P., 2020. Heat transfer. 10th Edition, McGraw-Hill Higher Education.

Huang, B.J., Chang, J.M., Wang, C.P., and Petrenko, V.A., 1999. A1-D analysis of ejector performance. International Journal of Refrigeration, 22(5), pp. 354–364, Doi:10.1016/S0140-7007(99)0004-3.

Jamal, S., and Ezzat, A.W., 2021. Investigation of evaporation and condensation process of induced flow using steam ejector. Journal of mechanics of continua and mathematical sciences, 16(2). Doi:10.26782/jmcms.2021.02.00007

Jassim, N.A., and Abid, M.A., 2016. Modeling and simulation of thermal performance of solar-assisted air conditioning system under Iraq climate. Journal of Engineering, 22(8), pp. 175-194. Doi:10.31026/j.eng.2016.08.11

Kalkan N., Young E.A., and Celiktas A. 2012. Solar thermal air conditioning technology reducing the footprint of solar thermal air conditioning. Renewable and Sustainable Energy Reviews, 16, pp. 6352–83. Doi:10.1016/j.rser.2012.07.014

Kim D.S. and Infante F. C., 2008. Solar refrigeration options, a state-of-the-art review. International Journal Refrigeration, 31, pp. 3–15. Doi:10.1016/j.ijrefrig.2007.07.011 .

Luis P.L., Jose O., and Christine P., 2008. A review on buildings energy consumption information. Energy and Buildings, 40, pp. 394–398. Doi:10.1016/j.enbuild.2007.03.007.

Masoud, D., Seyedali, S., and Gerry, E. S., 2018. Geometrical optimization of a steam jet-ejector using the computational fluid dynamics. Proceedings of the ASME, 5, pp. 1-11. Doi:10.1115/FEDSM2018-83203

Matsuo K., Sasaguchi K., Kiyotoki Y., and Mochizuki H., 1982. Investigation of supersonic air ejectors (part 2, effects of throat-area ratio on ejector performance). Bulletin of JSME, 25(10), pp. 1898-1905. Doi:10.1299/jsme1958.25.1898

Megdouli K., Elakhdar, M., Nahdi, E., Kairouani, L., and Mhimid, A., 2015. Performance evaluation of a solar ejector-vapour compression cycle for cooling application. Journal of Physics, Conference Series 596, P. 012004. Doi:10.1088/1742-6596/596/1/012004.

Natthawut R.,Tongchana, T., Satha A., and Thanarath, S., 2013. CFD simulation on the effect of primary nozzle geometries for a steam ejector in refrigeration cycle. International Journal of Thermal Sciences, 63, pp. 133-145. Doi:10.1016/j.ijthermalsci.2012.07.009

Nguyen, V., and Vuaand, J.K., 2018. CFD simulation of ejector: is it worth to use real gas models?. EPJ Web of Conferences, 180, P. 02075. Doi:10.1051/epjconf/201818002075

Rashid, K.F., Hamakhan, I.A., and Mohammed, C.H., 2022. Dynamic simulation and optimization of flat plate solar collector parameters using the MATLAB program for Erbil-Iraq climate condition. Al-Rafidain Engineering Journal, 27(2), pp. 127-139. Doi: 10.33899/rengj.2022.133419.1167

Riffat, S.B., and Everitt, P., 1999. Experimental and CFD modelling of an ejector system for vehicle air conditioning. Journal of the Institute of Energy, 72, pp. 41-47.

Robert Nichols, 2010. Turbulence models and their application to complex flows. University of Alabama at Birmingham. https://overflow.larc.nasa.gov/wp-content/uploads/sites/54/2014/06/Turbulence_Guide_v4.01.pdf

Sokolov, M., and Hershgal, D., 1990. Enhanced ejector refrigeration cycles powered by low grade heat. Part 1 Systems characterization. International Journal Refrigeration, 13, P. 351. Doi:10.1016/0140-7007(90)90023-P

Sriveerakul, T., Aphornratana, S., and Chunnanond, K., 2007. Performance prediction of steam ejector using computational fluid dynamics: Part 2. Flow structure of a steam ejector influenced by operating pressures and geometries. International Journal of Thermal Sciences, 46, pp. 823–833. Doi:10.1016/j.ijthermalsci.2006.10.012

Sun D.W., 1999. Comparative study of the performance of an ejector refrigeration cycle operating with various refrigerants. Energy Conversion & Management, 40, pp. 873–884. Doi:10.1016/S0196-8904(98)00151-4.

Suvarnakuta, N., Pianthong, K., Sriveerakul, T., and Seehanam, W., 2020. Performance analysis of a two-stage ejector in an ejector refrigeration system using computational fluid dynamics. Engineering Applications Of Computational Fluid Mechanics, 14(1), pp. 669–682. Doi:10.1080/19942060.2020.1756913

Varga, S., Oliveira, A., Ma, X., Omer, S., Zhang, W., and Riffat, S., 2012. Comparative study of the performance of a variable area ratio steam ejector. 15th International Conference on Experimental Mechanics, 3179, Faculty of Engineering, University of Porto, Portugal, 22-27 July.

Wenxu, S., Xiaojing, M., Yuanmin, Z., Lei, J., and Haoyuan, X., 2021. Performance analysis and optimization of a steam ejector through streamlining of the primary nozzle. Case studies in thermal engineering, 27, P. 101356. Doi:10.1016/j.csite.2021.101356

Yapıcıa, R., Ersoya, H.K., Aktoprakoglua, A., Halkacıa, H.S., and Yigitb, O., 2008. Experimental determination of the optimum performance of ejector refrigeration system depending on ejector area ratio. International journal of refrigeration, 31, pp. 1183 – 1189. Doi:10.1016/j.ijrefrig.2008.02.010.

Yu, H., Lixin, G., Xiaodong, W., Anthony, C.Y., Cuiling, L., Ruifeng, C., Hengrui, L., Tim, B.Y., Jiyuan, T., and Guan, H.Y., 2019a. A steam ejector refrigeration system powered by engine combustion waste heat: part 2. Understanding the nature of the shock wave structure. Appl. Sci., 9, pp. 4435. Doi:10.3390/app9204275

Yu, H., Xiaodong W., Hao S., Guangli Z., Lixin G., and Jiyuan T., 2019b. CFD simulation on the boundary layer separation in the steam ejector and its influence on the pumping performance, Energy, 167, pp. 469-483. Doi:10.1016/j.energy.2018.10.195.

Similar Articles

You may also start an advanced similarity search for this article.