Numerical Simulation of the Behaviour of RC T-Beams Strengthened by EB-CFRP Composites Under Bending and Shear Effects
Main Article Content
Abstract
This article presents the results of numerical simulations performed using ABAQUS/CAE version 2019. The study aims to evaluate the structural integrity of reinforced concrete (RC) T-beams strengthened with externally bonded carbon fiber reinforcements polymer composite materials (EB) (CFRP), especially their response to bending and shear forces. The numerical model was validated by comparing the numerical and experimental results of eight RC T-beams. The numerical analysis was then extended to include various factors, including the impact of the tilt angle of the U-CFRP shell on the shear strength. The goal of this numerical extension is to implement a numerical model capable of simulating the nonlinear behavior of these beams accurately. A comparative analysis is also performed on the experimental and computational models, focusing on the damage modes and their load-induced deformation characteristics. The results showed a satisfactory level of agreement between the two sides. The average ratio of ultimate load to deflection in the numerical model simulation and experimental beam test is 1.004 and 1.046, respectively. The main finding is that inclined U-CFRP deformed at a 45° angle exhibits greater shear stiffness than beams embedded with vertical CFRP panels at a 90° angle, maintaining a constant CFRP panel spacing.
Article Details
How to Cite
Publication Dates
Received
Accepted
Published Online First
References
Abbas, H.Q., and Al‐Zuhairi, A.H., 2023. Impact of anchored CFRP composites on the strengthening of partially damaged PC girders. Journal of Engineering, 29(08), pp. 106-120. Doi:10.31026/j.eng.2023.08.08
Abdulhameed, A.A., Al-Zuhairi, A.H., Al Zaidee, S.R., Hanoon, A.N., Al Zand, A.W., Hason, M.M., and Abdulhameed, H.A., 2022. The behavior of hybrid fiber-reinforced concrete elements: A new stress-strain model using an evolutionary approach. Applied Sciences, 12(4), P. 2245. Doi:10.3390/app12042245
Abbasi, A., Benzeguir, Z.E.A., Chaallal, O., and El-Saikaly, G., 2022. FE modelling and simulation of the size effect of RC T-beams strengthened in shear with externally bonded FRP fabrics. Journal of Composites Science, 6(4), P. 116. Doi:10.3390/jcs6040116
Alobaidi, H.E., and Al-Zuhairi, A.H., 2023. Structural strengthening of insufficiently designed reinforced concrete T-beams using CFRP composites. Civil Engineering Journal, 9(8), pp. 1880-1896. Doi:10.28991/CEJ-2023-09-08-05
Al Shboul, K.W., Raheem, M.M., and Rasheed, H.A., 2021. Debonding characterization for all-lightweight RC T-beams strengthened in flexure with FRP. Journal of Building Engineering, 44(1), P. 103377. Doi:10.1016/j.jobe.2021.103377
Al-Zuhairi, A.H., Al-Ahmed, A.H., Abdulhameed, A.A., and Hanoon, A.N., 2022. Calibration of a new concrete damage plasticity theoretical model based on experimental parameters. Civil Engineering Journal, 8(2), pp. 225-237. Doi:10.28991/CEJ-2022-08-02-03
Abdulhameed, A.A., and Said, A.I., 2019. Behaviour of segmental concrete beams reinforced by pultruded cfrp plates: an experimental study. Journal of Engineering, 25(8), pp. 62-79. Doi:10.31026/j.eng.2019.08.11
Buyukozturk, O., Gunes, O., and Karaca, E., 2004, Progress on understanding debonding problems in reinforced concrete and steel members strengthened using FRP composites. Construction and Building Materials , 18(1), pp. 9-19. Doi:10.1016/S0950-0618(03)00094-1
Bizindavyi, L., and Neale, K.W., 1999. Transfer lengths and bond strengths for composites bonded to concrete. ASCE Journal of Composites for Construction, 3 (4), pp. 153-160. Doi:10.1061/(ASCE)1090-0268(1999)3:4(153)
Benzeguir, Z.E.A., El-Saikaly, G., and Chaallal, O., 2019. Size effect in RC T-beams strengthened in shear with externally bonded CFRP sheets: Experimental study. Journal of Composites for Construction, 23(6), P. 04019048. Doi:10.1061/(ASCE)CC.1943-5614.0000975
Daraj, A.J., and Al‐Zuhairi, A.H., 2023. the effect of cohesive debonding elimination on enhancing the flexural performance of damaged unbonded prestressed concrete girders strengthened using NSM CFRP. Journal of Engineering, 29(09), pp. 102-116. Doi:10.31026/j.eng.2023.09.08
Deniaud, C., and Roger Cheng, J.J., 2003. Reinforced concrete T-beams strengthened in shear with fiber reinforced polymer sheets. Journal of Composites for Construction, 7(4), pp. 302-310. Doi:10.1061/(ASCE)1090-0268(2003)7:4(302)
Daneshvar, K., Moradi, M.J., Khaleghi, M., Rezaei, M., Farhangi, V., and Hajiloo, H., 2022. Effects of impact loads on heated-and-cooled reinforced concrete slabs. Journal of Building Engineering, 61(1), P. 105328. Doi:10.1016/j.jobe.2022.105328
Faron, A., and Rombach, G.A., 2020. Simulation of crack growth in reinforced concrete beams using extended finite element method. Engineering Failure Analysis, 116(1), P. 104698. Doi:10.1016/j.engfailanal.2020.104698.
Feng, D. C., Ren, X. D., and Li, J., 2018. Softened damage-plasticity model for analysis of cracked reinforced concrete structures. Journal of Structural Engineering, 144(6), P. 04018044. Doi:10.1061/(ASCE)ST.1943-541X.0002015
Hernoune, H., Benabed, B., Kanellopoulos, A., Al-Zuhairi, A.H., and Guettala, A., 2020. Experimental and numerical study of the behaviour of reinforced masonry walls with NSM CFRP strips subjected to combined loads. Buildings, 10(6), P. 103. Doi:10.3390/buildings10060103
Hafezolghorani, M., Hejazi, F., Vaghei, R., Jaafar, M.S.B., and Karimzade, K., 2017. Simplified damage plasticity model for concrete. Structural Engineering International, 27(1), pp. 68-78. Doi:10.2749/101686616X1081
Ibrahim, R.S., and Al-Zuhairi, A.H., 2022. Behaviour of RC columns strengthened by combined (CFRP and steel jacket). Materials Today: Proceedings, 61, pp. 1126-1134. Doi:10.1016/j.matpr.2021.10.514
Elwi, A.A., and Murray, D.W., 1979. A 3D hypoelastic concrete constitutive relationship. Journal of the Engineering Mechanics Division, 105(4), pp. 623-641. Doi:10.1061/JMCEA3.0002510
Hordijk, D.A., and Reinhardt, H.W., 1991. Growth of discrete cracks in concrete under fatigue loading. In Toughening mechanisms in quasi-brittle materials (pp. 541-554). Dordrecht: Springer Netherlands. Doi:10.1007/978-94-011-3388-3_33
Lorenzis, L., Miller, B., and Nanni, A., 2001. Bond of fiber-reinforced polymer laminates to concrete. ACI material journal, 98 (1), pp. 256-264. Doi:10.14359/10281
Mhanna, H.H., Hawileh, R.A., and Abdalla, J.A. 2019. Shear strengthening of reinforced concrete beams using CFRP wraps. Procedia Structural Integrity, 17, pp. 214-221. Doi:10.1016/j.prostr.2019.08.029
Mahmud, G.H., Yang, Z., and Hassan, A.M., 2013. Experimental and numerical studies of size effects of Ultra High Performance Steel Fibre Reinforced Concrete (UHPFRC) beams. Construction and Building materials, 48(1), pp. 1027-1034. Doi:10.1016/j.conbuildmat.2013.07.061
Naqi, A.W., and Al-zuhairi, A.H., 2020. Nonlinear finite element analysis of RCMD beams with large circular opening strengthened with CFRP material. Journal of Engineering, 26(11), pp. 170-183. Doi:10.31026/j.eng.2020.11.11
Nakaba, K., Kanakubo, T., Furuta, T., and Yoshizawa, H., 2001. Bond behaviour between fiber-reinforced polymer laminates and concrete. ACI Structural Journal, 98 (3), pp. 359-367. Doi:10.14359/10224
Najaf, E., Orouji, M., and Ghouchani, K., 2022. Finite element analysis of the effect of type, number, and installation angle of FRP sheets on improving the flexural strength of concrete beams. Case Studies in Construction Materials, 17(1), P. 01670. Doi:10.1016/j.cscm.2022.e01670
Nicolaides, D., and Markou, G., 2015. Modelling the flexural behaviour of fibre reinforced concrete beams with FEM. Engineering Structures, 99, pp. 653-665. Doi:10.1016/j.engstruct.2015.05.028
Shah, S.A.R., Khan, A.R., Aslam, M.A., Khan, T., Arshad, K., Hussan, S., Sultan, A., Shahzadi, G., and Waseem, M., 2020. Sustainable FRP-confined symmetric concrete structures: an application experimental and numerical validation process for reference data. Applied Sciences, 10(1), P. 333. Doi:10.3390/app10010333
Singh, M., Sheikh, A.H., Ali, M.M., Visintin, P., and Griffith, M.C., 2017. Experimental and numerical study of the flexural behaviour of ultra-high performance fibre reinforced concrete beams. Construction and Building Materials, 138, pp. 12-25. Doi:10.1016/j.conbuildmat.2017.02.002
Tran, D.A., Shen, X., Sorelli, L., Ftima, M.B., and Brühwiler, E., 2023. Predicting the effect of non-uniform fiber distribution on the tensile response of ultra-high-performance fiber reinforced concrete by magnetic inductance-based finite element analysis. Cement and Concrete Composites, 135(1), P. 104810. Doi:10.1016/j.cemconcomp.2022.104810
Tysmans, T., Wozniak, M., Remy, O., and Vantomme, J., 2015. Finite element modelling of the biaxial behaviour of high-performance fibre-reinforced cement composites (HPFRCC) using Concrete Damaged Plasticity. Finite Elements in Analysis and Design, 100, pp. 47-53. Doi:10.1016/j.finel.2015.02.004
Ueda, T., Sato, Y., and Asano, Y., 1999. experimental study on bond strength of continuous carbon fiber sheet. ACI,SP., 188 (37), pp. 407-413. Doi:10.14359/5641
Yang, X., Liu, L., and Wang, Y., 2018. Experimental test and numerical simulation of the initial crack reinforced concrete beam in bending. In IOP Conference Series: Earth and Environmental Science, 186(2), P. 012056. Doi:10.1088/1755-1315/186/2/012056
Zaki, M.A., Rasheed, H.A., Roukerd, R.R., and Raheem, M., 2020. Performance of reinforced concrete T beams strengthened with flexural CFRP sheets and secured using CFRP splay anchors. Engineering Structures, 210(1), P. 110304. Doi:10.1016/j.engstruct.2020.110304
Zhang, D., Wang, Q., and Dong, J., 2016. Simulation study on CFRP strengthened reinforced concrete beam under four-point bending. Computers and Concrete, 17(3), pp. 407-421. Doi:10.12989/cac.2016.17.3.407