Bioleaching Assisting Phytoextraction of Metals from Contaminated Soil: An Overview

Main Article Content

Setyo Budi Kurniawan

Abstract

Human activities such as mining, industrial operations and waste management can lead to soil pollution by heavy metals including chromium, cadmium, mercury, lead and arsenic. These contaminants cause harm both to humans and the ecosystems where they are found. Of all the previously used techniques, phytoremediation is the most promising one for cleaning up heavy metal-contaminated soils. Phytoremediation refers to a technique where plants use roots for absorbing, storing and immobilizing soil contaminants while also removing them. Bioleaching is a method which uses microorganisms to dissolve metals that have been shown to facilitate phytoextraction in increasing the availability of metals. It is anticipated that research advancements and technological innovations will make it more efficient and appropriate. Root absorption is increased by bioleaching through modification of rhizosphere thus making it more bioavailable for plant uptake. Plant-bacterial interactions are proven to speed up the remediation rates. Both processes can help clear off pollutants from the soil environment. However, further research is needed to find and improve the best strains of microorganisms, assess long-term soil impacts and control massive influxes of bacteria. The combination of bioleaching and phytoextraction offers a reliable and efficient system for removing metals from polluted soils.

Article Details

How to Cite
“Bioleaching Assisting Phytoextraction of Metals from Contaminated Soil: An Overview” (2024) Journal of Engineering, 30(11), pp. 1–20. doi:10.31026/j.eng.2024.11.01.
Section
Articles

How to Cite

“Bioleaching Assisting Phytoextraction of Metals from Contaminated Soil: An Overview” (2024) Journal of Engineering, 30(11), pp. 1–20. doi:10.31026/j.eng.2024.11.01.

Publication Dates

Received

2024-07-08

Revised

2024-09-25

Accepted

2024-10-27

Published Online First

2024-11-01

References

Abdullah, S.R.S., Al-Baldawi, I.A., Almansoory, A.F., Purwanti, I.F., Al-Sbani, N.H. and Sharuddin, S.S.N., 2020. Plant-assisted remediation of hydrocarbons in water and soil: Application, mechanisms, challenges and opportunities. Chemosphere, 247, p.125932. https://doi.org/10.1016/j.chemosphere.2020.125932.

Agarwal, P., Sarkar, M., Chakraborty, B. and Banerjee, T., 2018. Phytoremediation of air pollutants: Prospects and ؤhallenges. Phytomanagement of Polluted Sites: Market Opportunities in Sustainable Phytoremediation, pp.221–241. https://doi.org/10.1016/B978-0-12-813912-7.00007-7.

Ahmad, A., Kurniawan, S.B., Abdullah, S.R.S., Othman, A.R. and Hasan, H.A., 2022a. Contaminants of Emerging Concern (CECs) in aquaculture effluent: Insight into breeding and rearing activities, alarming impacts, regulations, performance of wastewater treatment unit and future approaches. Chemosphere, 290, p.133319. https://doi.org/10.1016/j.chemosphere.2021.133319.

Ahmad, A., Kurniawan, S.B., Ahmad, J., Alias, J., Marsidi, N., Said, N.S.M., Yusof, A.S.M., Buhari, J., Ramli, N.N., Rahim, N.F.M., Abdullah, S.R.S., Othman, A.R. and Hasan, H.A., 2022b. Dosage-based application versus ratio-based approach for metal- and plant-based coagulants in wastewater treatment: Merits, limitations, and applicability. Journal of Cleaner Production, 334. https://doi.org/10.1016/j.jclepro.2021.130245.

Ahmad, J., Abdullah, S.R.S., Hasan, H.A., Othman, A.R. and Kurniawan, S.B., 2024. Effect of Ludwigia octovalvis biomass ratio on hydrocarbon phytotoxicity. Journal of Water Process Engineering, 60, p.105177. https://doi.org/10.1016/j.jwpe.2024.105177.

Ahmed, H.M., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Ismail, N.I. and Kurniawan, S.B., 2021. Phytotoxicity of coffee wastewater to water hyacinth as prior step to phytotreatment assessment: Influence of concentration and amount of plant biomass. Environmental Engineering and Management Journal, 20(9), pp.1543–1554. https://doi.org/10.30638/eemj.2021.143.

Akinci, G. and Guven, D.E., 2011. Bioleaching of heavy metals contaminated sediment by pure and mixed cultures of Acidithiobacillus spp. Desalination, 268(1–3), pp.221–226. https://doi.org/10.1016/j.desal.2010.10.032.

Al-Ajalin, F.A., Idris, M., Abdullah, S.R.S., Kurniawan, S.B. and Imron, M.F., 2024. Biosorption of Lead and Copper by epiphytic rhizobacterial species isolated from Lepironia articulata and Scirpus grossus. Journal of Ecological Engineering, 25(2), pp.44–61. https://doi.org/10.12911/22998993/176144.

Al-Ajalin, F.A.H., Abdullah, S.R.S., Idris, M., Kurniawan, S.B., Ramli, N.N. and Imron, M.F., 2022. Removal of Ammonium, Phosphate, and COD by bacteria isolated from Lepironia articulata and Scirpus grossus root system. International Journal of Environmental Science and Technology, 19(12), pp.11893–11904. https://doi.org/10.1007/s13762-022-03926-1.

Al-Ajalin, F.A.H., Idris, M., Abdullah, S.R.S., Kurniawan, S.B. and Imron, M.F., 2020. Design of a reed bed system for treatment of domestic wastewater using native plants. Journal of Ecological Engineering, 21(6), pp.22–28. https://doi.org/10.12911/22998993/123256.

Al-Baldawi, I.A., 2018. Removal of 1,2-Dichloroethane from real industrial wastewater using a sub-surface batch system with Typha angustifolia L. Ecotoxicology and Environmental Safety, 147, pp.260–265. https://doi.org/10.1016/j.ecoenv.2017.08.022.

Al-Baldawi, I.A., Mohammed, A.A., Mutar, Z.H., Abdullah, S.R.S., Jasim, S.S. and Almansoory, A.F., 2021. Application of phytotechnology in alleviating pharmaceuticals and personal care products (PPCPs) in wastewater: Source, impacts, treatment, mechanisms, fate, and SWOT analysis. Journal of Cleaner Production, 319, p.128584. https://doi.org/10.1016/j.jclepro.2021.128584.

Alaboudi, K.A., Ahmed, B. and Brodie, G., 2018. Phytoremediation of Pb and Cd contaminated soils by using sunflower (Helianthus annuus) plant. Annals of Agricultural Sciences, 63(1), pp.123–127. https://doi.org/10.1016/j.aoas.2018.05.007.

Ali, S., Abbas, Z., Rizwan, M., Zaheer, I.E., Yavas, I., Ünay, A., Abdel-Daim, M.M., Bin-Jumah, M., Hasanuzzaman, M. and Kalderis, D., 2020. Application of floating aquatic plants in phytoremediation of heavy metals polluted water: A review. Sustainability (Switzerland), 12(5). https://doi.org/10.3390/su12051927.

Almansoory, A.F., Idris, M., Abdullah, S.R.S., Anuar, N. and Kurniawan, S.B., 2021. Response and capability of Scirpus mucronatus (L.) in phytotreating petrol-contaminated soil. Chemosphere, 269, p.128760. https://doi.org/10.1016/j.chemosphere.2020.128760.

Aransiola, S.A., Ijah, U.J.J. and Abioye, O.P., 2013. Phytoremediation of lead polluted soil by Glycine max L. Applied and Environmental Soil Science, 2013, pp.1–7. https://doi.org/10.1155/2013/631619.

Arliyani, I., Tangahu, B.V., Mangkoedihardjo, S., Zulaika, E. and Kurniawan, S.B., 2023. Enhanced leachate phytodetoxification test combined with plants and rhizobacteria bioaugmentation. Heliyon, 9(1). https://doi.org/10.1016/j.heliyon.2023.e12921.

Ayangbenro, A.S., Olanrewaju, O.S. and Babalola, O.O., 2018. Sulfate-reducing bacteria as an effective tool for sustainable acid mine bioremediation. Frontiers in microbiology, 9, p.1986. https://doi.org/10.3389/fmicb.2018.01986.

Benizri, E., Lopez, S., Durand, A. and Kidd, P.S., 2021. Diversity and role of endophytic and rhizosphere microbes associated with hyperaccumulator plants during metal accumulation. Agromining: Farming for Metals: Extracting Unconventional Resources Using Plants, pp.239-279. https://doi.org/10.1007/978-3-030-58904-2_12.

Bhandari, G., 2018. Phytoremediation: Exploitation of plants for environmental cleanup. Microbial Biotechnology in Environmental Monitoring and Cleanup, pp.286–304.

Bolan, N.S., Park, J.H., Robinson, B., Naidu, R. and Huh, K.Y., 2011. Phytostabilization: A green approach to contaminant containment. Advances in Agronomy, 112, pp.145–204. https://doi.org/10.1016/B978-0-12-385538-1.00004-4.

Briffa, J., Sinagra, E. and Blundell, R., 2020. Heavy metal pollution in the environment and their toxicological effects on humans. Heliyon, 6(9), p.e04691. https://doi.org/10.1016/j.heliyon.2020.e04691.

Chellaiah, E.R., 2018. Cadmium (heavy metals) bioremediation by Pseudomonas aeruginosa: A minireview. Applied Water Science, 8(6), P.154. https://doi.org/10.1007/s13201-018-0796-5.

Cosio, C., Martinoia, E. and Keller, C., 2004. Hyperaccumulation of Cadmium and Zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiology, 134(2), pp.716–725. https://doi.org/10.1104/pp.103.031948.

Cui, J., Zhu, N., Mao, F., Wu, P. and Dang, Z., 2021. Bioleaching of indium from waste LCD panels by Aspergillus niger: Method optimization and mechanism analysis. Science of The Total Environment, 790, p.148151. https://doi.org/10.1016/j.scitotenv.2021.148151.

Deng, X., Chai, L., Yang, Z., Tang, C., Tong, H. and Yuan, P., 2012. Bioleaching of heavy metals from a contaminated soil using indigenous Penicillium chrysogenum strain F1. Journal of Hazardous Materials, 233–234, pp. 25–32. https://doi.org/10.1016/j.jhazmat.2012.06.054.

Diarra, I., Kotra, K.K. and Prasad, S., 2021. Assessment of biodegradable chelating agents in the phytoextraction of heavy metals from multi–metal contaminated soil. Chemosphere, 273, p.128483. https://doi.org/10.1016/j.chemosphere.2020.128483.

Diaz, M.A., De Ranson, I.U., Dorta, B., Banat, I.M., Blazquez, M.L., Gonzalez, F., Muñoz, J.A. and Ballester, A., 2015. Metal removal from contaminated soils through bioleaching with oxidizing bacteria and rhamnolipid biosurfactants. Soil and Sediment Contamination: An International Journal, 24(1), pp.16–29. https://doi.org/10.1080/15320383.2014.907239.

Du, J., Guo, Z., Li, R., Ali, A., Guo, D., Lahori, A.H., Wang, P., Liu, X., Wang, X. and Zhang, Z., 2020. Screening of Chinese mustard (Brassica juncea L.) cultivars for the phytoremediation of Cd and Zn based on the plant physiological mechanisms. Environmental Pollution, 261. https://doi.org/10.1016/j.envpol.2020.114213.

Falahi, O.A.A., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Ewadh, H.M., Kurniawan, S.B. and Imron, M.F., 2022. Occurrence of pharmaceuticals and personal care products in domestic wastewater, available treatment technologies, and potential treatment using constructed wetland: a review. Process Safety and Environmental Protection, 168, pp.1067-1088. https://doi.org/10.1016/j.psep.2022.10.082.

Fang, D., Liu, X., Zhang, R., Deng, W. and Zhou, L., 2013. Removal of contaminating metals from soil by sulfur-based bioleaching and biogenic sulfide-based precipitation. Geomicrobiology Journal, 30(6), pp.473-478. https://doi.org/10.1080/01490451.2012.712083.

Fang, D., Zhang, R., Zhou, L. and Li, J., 2011. A combination of bioleaching and bioprecipitation for deep removal of contaminating metals from dredged sediment. Journal of Hazardous Materials. https://doi.org/10.1016/j.jhazmat.2011.05.008.

Gan, M., Jie, S., Li, M., Zhu, J. and Liu, X., 2015. Bioleaching of multiple metals from contaminated sediment by moderate thermophiles. Marine Pollution Bulletin, 97(1–2), pp.47–55. https://doi.org/10.1016/j.marpolbul.2015.06.040.

Gavrilescu, M., 2022. Microbial recovery of critical metals from secondary sources. Bioresource Technology, 344, p.126208. https://doi.org/10.1016/j.biortech.2021.126208.

Giese, E.C., 2021. Influence of organic acids on pentlandite bioleaching by Acidithiobacillus ferrooxidans LR. 3 Biotech, 11(4), p.165. https://doi.org/10.1007/s13205-021-02711-0.

Gomes, H.I., Funari, V., Mayes, W.M., Rogerson, M. and Prior, T.J., 2018. Recovery of Al, Cr and V from steel slag by bioleaching: Batch and column experiments. Journal of Environmental Management, 222(May), pp.30–36. https://doi.org/10.1016/j.jenvman.2018.05.056.

Govarthanan, M., Lee, G.W., Park, J.H., Kim, J.S., Lim, S.S., Seo, S.K., Cho, M., Myung, H., Kamala-Kannan, S. and Oh, B.T., 2014. Bioleaching characteristics, influencing factors of Cu solubilization and survival of Herbaspirillum sp. GW103 in Cu contaminated mine soil. Chemosphere, 109, pp.42–48. https://doi.org/10.1016/j.chemosphere.2014.02.054.

Hawrot-Paw, M., Ratomski, P., Mikiciuk, M., Staniewski, J., Koniuszy, A., Ptak, P. and Golimowski, W., 2019. Pea cultivar Blauwschokker for the phytostimulation of biodiesel degradation in agricultural soil. Environmental Science and Pollution Research, 26(33), pp.34594–34602. https://doi.org/10.1007/s11356-019-06347-9.

Herath, I. and Vithanage, M., 2015. Phytoremediation in constructed wetlands. Phytoremediation: Management of Environmental Contaminants, Volume 2. Springer. https://doi.org/10.1007/978-3-319-10969-5_21.

Ighalo, J.O., Kurniawan, S.B., Iwuozor, K.O., Aniagor, C.O., Ajala, O.J., Oba, S.N., Iwuchukwu, F.U., Ahmadi, S. and Igwegbe, C.A., 2022. A review of treatment technologies for the mitigation of the toxic environmental effects of acid mine drainage (AMD). Process Safety and Environmental Protection, 157, pp.37–58. https://doi.org/10.1016/j.psep.2021.11.008.

Imron, M.F., Ananta, A.R., Ramadhani, I.S., Kurniawan, S.B. and Abdullah, S.R.S., 2021. Potential of Lemna minor for removal of methylene blue in aqueous solution: Kinetics, adsorption mechanism, and degradation pathway. Environmental Technology and Innovation, 24, p.101921. https://doi.org/10.1016/j.eti.2021.101921.

Imron, M.F., Firdaus, A.A.F., Flowerainsyah, Z.O., Rosyidah, D., Fitriani, N., Kurniawan, S.B., Abdullah, S.R.S., Hasan, H.A. and Wibowo, Y.G., 2023. Phytotechnology for domestic wastewater treatment: Performance of Pistia stratiotes in eradicating pollutants and future prospects. Journal of Water Process Engineering, 51, p.103429. https://doi.org/10.1016/j.jwpe.2022.103429.

Imron, M.F., Hestianingsi, W.O.A., Putranto, T.W.C., Citrasari, N., Abdullah, S.R.S., Hasan, H.A. and Kurniawan, S.B., 2024a. Effect of the number of Cyperus rotundus and medium height on the performance of batch-constructed wetland in treating aquaculture effluent. Chemosphere, 353, p.141595. https://doi.org/10.1016/j.chemosphere.2024.141595.

Imron, M.F., Kurniawan, S.B. and Abdullah, S.R.S., 2021. Resistance of bacteria isolated from leachate to heavy metals and the removal of Hg by Pseudomonas aeruginosa strain FZ-2 at different salinity levels in a batch biosorption system. Sustainable Environment Research, 31(1), p.14. https://doi.org/10.1186/s42834-021-00088-6.

Imron, M.F., Kurniawan, S.B. and Soegianto, A., 2019. Characterization of mercury-reducing potential bacteria isolated from Keputih non-active sanitary landfill leachate, Surabaya, Indonesia under different saline conditions. Journal of Environmental Management, 241, pp.113–122. https://doi.org/10.1016/j.jenvman.2019.04.017.

Imron, M.F., Kurniawan, S.B., Soegianto, A. and Wahyudianto, F.E., 2019. Phytoremediation of methylene blue using duckweed (Lemna minor). Heliyon, 5(8), p.e02206. https://doi.org/10.1016/j.heliyon.2019.e02206.

Imron, M.F., Setiawan, W., Putranto, T.W.C., Abdullah, S.R.S. and Kurniawan, S.B., 2024b. Biosorption of chromium by live and dead cells of Bacillus nitratireducens isolated from textile effluent. Chemosphere, 359, p.142389. https://doi.org/10.1016/j.chemosphere.2024.142389.

Ismail, N., Izzati, Abdullah, S.R.S., Idris, M., Hasan, H.A., Halmi, M.I.E., Al Sbani, N.H. and Jehawi, O.H., 2019. Simultaneous bioaccumulation and translocation of iron and aluminium from mining wastewater by Scirpus grossus. Desalination and Water Treatment, 163, pp.133–142. https://doi.org/10.5004/dwt.2019.24201.

Ismail, N. ‘Izzati, Abdullah, S.R.S., Idris, M., Kurniawan, S.B., Effendi Halmi, M.I., AL Sbani, N.H., Jehawi, O.H. and Hasan, H.A., 2020. Applying rhizobacteria consortium for the enhancement of Scirpus grossus growth and phytoaccumulation of Fe and Al in pilot constructed wetlands. Journal of Environmental Management, 267, p.110643. https://doi.org/10.1016/j.jenvman.2020.110643.

Jones, S. and Santini, J.M., 2023. Mechanisms of bioleaching: iron and sulfur oxidation by acidophilic microorganisms. Essays in Biochemistry, 67(4), pp.685–699. https://doi.org/10.1042/EBC20220257.

Kabra, A.N., Khandare, R. V., Waghmode, T.R. and Govindwar, S.P., 2012. Phytoremediation of textile effluent and mixture of structurally different dyes by Glandularia pulchella (Sweet) Tronc. Chemosphere, 87(3), pp.265–272. https://doi.org/10.1016/j.chemosphere.2011.12.052.

Kadir, A.A., Abdullah, S.R.S., Othman, B.A., Hasan, H.A., Othman, A.R., Imron, M.F., Ismail, N. ‘Izzati and Kurniawan, S.B., 2020. Dual function of Lemna minor and Azolla pinnata as phytoremediator for Palm Oil Mill Effluent and as feedstock. Chemosphere, 259, p.127468. https://doi.org/10.1016/j.chemosphere.2020.127468.

Keller, C., Ludwig, C., Davoli, F. and Wochele, J., 2005. Thermal treatment of metal-enriched biomass produced from heavy metal phytoextraction. Environmental Science and Technology, 39(9), pp.3359–3367. https://doi.org/10.1021/es0484101.

Khan, I., Aftab, M., Shakir, S., Ali, M., Qayyum, S., Rehman, M.U., Haleem, K.S. and Touseef, I., 2019a. Mycoremediation of heavy metal (Cd and Cr)–polluted soil through indigenous metallotolerant fungal isolates. Environmental Monitoring and Assessment, 191(9), p.585. https://doi.org/10.1007/s10661-019-7769-5.

Khan, I., Ali, M., Aftab, M., Shakir, S., Qayyum, S., Haleem, K.S. and Tauseef, I., 2019b. Mycoremediation: A treatment for heavy metal-polluted soil using indigenous metallotolerant fungi. Environmental Monitoring and Assessment, 191(10), p.622. https://doi.org/10.1007/s10661-019-7781-9.

Kumar, B.L. and Gopal, D.S., 2015. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech, 5, pp.867-876. https://doi.org/10.1007/s13205-015-0293-6.

Kumar, R.N. and Nagendran, R., 2007. Influence of initial pH on bioleaching of heavy metals from contaminated soil employing indigenous Acidithiobacillus thiooxidans. Chemosphere, 66(9), pp.1775–1781. https://doi.org/10.1016/j.chemosphere.2006.07.091.

Kurniawan, S.B., Abdullah, S.R.S., Imron, M.F., Said, N.S.M., Ismail, N. ‘Izzati, Hasan, H.A., Othman, A.R. and Purwanti, I.F., 2020. Challenges and opportunities of biocoagulant/bioflocculant application for drinking water and wastewater treatment and its potential for sludge recovery. International Journal of Environmental Research and Public Health, 17(24), pp.1–33.

https://doi.org/10.3390/ijerph17249312.

Kurniawan, S.B., Ahmad, A., Imron, M.F., Abdullah, S.R.S., Hasan, H.A., Othman, A.R. and Kuncoro, E.P., 2023. Performance of chemical-based vs bio-based coagulants in treating aquaculture wastewater and cost-benefit analysis. Polish Journal of Environmental Studies, 32(2), pp.1177–1187. https://doi.org/10.15244/pjoes/156419.

Kurniawan, S.B., Ahmad, A., Said, N.S.M., Imron, M.F., Abdullah, S.R.S., Othman, A.R., Purwanti, I.F. and Hasan, H.A., 2021. Macrophytes as wastewater treatment agents: Nutrient uptake and potential of produced biomass utilization toward circular economy initiatives. Science of the Total Environment, 790, p.148219. https://doi.org/10.1016/j.scitotenv.2021.148219.

Kurniawan, S.B., Imron, M.F., Sługocki, Ł., Nowakowski, K., Ahmad, A., Najiya, D., Abdullah, S.R.S., Othman, A.R., Purwanti, I.F. and Hasan, H.A., 2022a. Assessing the effect of multiple variables on the production of bioflocculant by Serratia marcescens: Flocculating activity, kinetics, toxicity, and flocculation mechanism. Science of the Total Environment, 836, p.155564. https://doi.org/10.1016/j.scitotenv.2022.155564.

Kurniawan, S.B., Pambudi, D.S.A., Ahmad, M.M., Alfanda, B.D., Imron, M.F. and Abdullah, S.R.S., 2022b. Ecological impacts of ballast water loading and discharge: Insight into the toxicity and accumulation of disinfection by-products. Heliyon, 8(3), p.e09107. https://doi.org/10.1016/j.heliyon.2022.e09107.

Kurniawan, S.B., Ramli, N.N., Said, N.S.M., Alias, J., Imron, M.F., Abdullah, S.R.S., Othman, A.R., Purwanti, I.F. and Hasan, H.A., 2022c. Practical limitations of bioaugmentation in treating heavy metal contaminated soil and role of plant growth promoting bacteria in phytoremediation as a promising alternative approach. Heliyon, 8(4), p.e08995. https://doi.org/10.1016/j.heliyon.2022.e08995.

Li, L., Feng, Y., Li, J., Li, Q., Liu, T. and Chen, Q., 2021. Purification efficiency of eight aquatic plant species in an artificial floating island system in relation to extracellular enzyme activity and microbial community. Environmental Engineering Research, 27(6), p.210443. https://doi.org/10.4491/eer.2021.443.

Li, Y., Lin, J., Huang, Y., Yao, Y., Wang, X., Liu, C., Liang, Y., Liu, K. and Yu, F., 2020. Bioaugmentation-assisted phytoremediation of manganese and cadmium co-contaminated soil by Polygonaceae plants (Polygonum hydropiper L. and Polygonum lapathifolium L.) and Enterobacter sp. FM-1. Plant and Soil, 448(1–2), pp.439–453. https://doi.org/10.1007/s11104-020-04447-x.

Mallikarjuna, N. and Yellamma, K., 2019. Genetic and metabolic engineering of microorganisms for the production of various food products. In: Recent Developments in Applied Microbiology and Biochemistry. pp.167–182. https://doi.org/10.1016/B978-0-12-816328-3.00013-1.

Masinire, F., Adenuga, D.O., Tichapondwa, S.M. and Chirwa, E.M.N., 2021. Phytoremediation of Cr(VI) in wastewater using the vetiver grass (Chrysopogon Zizanioides). Minerals Engineering, 172, p.107141. https://doi.org/10.1016/j.mineng.2021.107141.

McCutcheon, S.C. and Jørgensen, S.E., 2018. Phytoremediation. Encyclopedia of Ecology, 4, pp.568–582. https://doi.org/10.1016/B978-0-444-63768-0.00069-X.

Möller, K. and Müller, T., 2012. Effects of anaerobic digestion on digestate nutrient availability and crop growth: A review. Engineering in Life Sciences, 12(3), pp.242-257. https://doi.org/10.1002/elsc.201100085.

Nareshkumar, R., Nagendran, R. and Parvathi, K., 2008. Bioleaching of heavy metals from contaminated soil using Acidithiobacillus thiooxidans: effect of sulfur/soil ratio. World Journal of Microbiology and Biotechnology, 24(8), pp.1539–1546. https://doi.org/10.1007/s11274-007-9639-5.

Nayak, S., S, R., P, B. and Kale, P., 2020. A review of chromite mining in Sukinda Valley of India: Impact and potential remediation measures. International Journal of Phytoremediation, 22(8), pp.804–818. https://doi.org/10.1080/15226514.2020.1717432.

Nguyen, V.K., Tran, T., Han, H.J., Lee, S.H. and Lee, J.U., 2015. Possibility of bacterial leaching of Antimony, Chromium, Copper, Manganese, Nickel, and Zinc from contaminated sediment. Journal of Geochemical Exploration, 156, pp.153–161. https://doi.org/10.1016/j.gexplo.2015.05.012.

Niu, X.Y., Wang, S.K., Zhou, J., Di, D.L., Sun, P. and Huang, D.Z., 2021. Inoculation with indigenous rhizosphere microbes enhances aboveground accumulation of lead in Salix integra Thunb. by improving transport coefficients. Frontiers in Microbiology, 12, p.686812. https://doi.org/10.3389/fmicb.2021.686812.

Odoni, D.I., van Gaal, M.P., Schonewille, T., Tamayo-Ramos, J.A., Martins dos Santos, V.A.P., Suarez-Diez, M. and Schaap, P.J., 2017. Aspergillus niger Secretes Citrate to increase Iron bioavailability. Frontiers in Microbiology, 8. https://doi.org/10.3389/fmicb.2017.01424.

Oginawati, K., Susetyo, S.H., Rahmawati, S.I., Kurniawan, S.B. and Abdullah, S.R.S., 2022. Distribution of organochlorine pesticide pollution in water, sediment, mollusk, and fish at Saguling dam, West Java, Indonesia. Toxicological Research, 38(2), pp.149–157. https://doi.org/10.1007/s43188-021-00094-1.

Oginawati, K., Susetyo, S.H., Rosalyn, F.A., Kurniawan, S.B. and Abdullah, S.R.S., 2021. Risk analysis of inhaled hexavalent chromium (Cr6+) exposure on blacksmiths from industrial area. Environmental Science and Pollution Research, 28(11), pp.14000–14008. https://doi.org/10.1007/s11356-020-11590-6.

Osama, O.A., Abdullah, S.R.S., Hasan, H.A., Othman, A.R., Ewadh, H.M., Al-Baldawi, I.A., Sharuddin, S.S.N., Kurniawan, S.B. and Ismail, N.I., 2022. Elimination of mixed ibuprofen and paracetamol from spiked domestic wastewater via a pilot continuous aerated sub-surface constructed wetland system. Journal of Water Process Engineering, 50. https://doi.org/10.1016/j.jwpe.2022.103308.

Pande, V., Pandey, S.C., Sati, D., Bhatt, P. and Samant, M., 2022. Microbial interventions in bioremediation of heavy metal contaminants in agroecosystem. Frontiers in microbiology, 13, p.824084. https://doi.org/10.3389/fmicb.2022.824084.

Purwanti, I.F., Abdullah, S.R.S., Hamzah, A., Idris, M., Basri, H., Latif, M.T., Mukhlisin, M., Kurniawan, S.B. and Imron, M.F., 2023. Maximizing diesel removal from contaminated sand using Scirpus mucronatus and assessment of rhizobacteria addition effect. Heliyon, 9(11), p.e21737. https://doi.org/10.1016/j.heliyon.2023.e21737.

Purwanti, I.F., Kurniawan, S.B., Titah, H.S. and Tangahu, B.V., 2018. Identification of acid and Aluminium resistant bacteria isolated from aluminium recycling area. International Journal of Civil Engineering and Technology, 9(2), pp.945–954.

Purwanti, I.F., Obenu, A., Tangahu, B.V., Kurniawan, S.B., Imron, M.F. and Abdullah, S.R.S., 2020. Bioaugmentation of Vibrio alginolyticus in phytoremediation of aluminium-contaminated soil using Scirpus grossus and Thypa angustifolia. Heliyon, 6(9), p.e05004. https://doi.org/10.1016/j.heliyon.2020.e05004.

Purwanti, I.F., Simanjuntak, D.Y. and Kurniawan, S.B., 2018. Toxicity test of Aluminium to Vibrio alginolyticus as a preliminary test of contaminated soil remediation. In: AIP Conference Proceedings. https://doi.org/10.1063/1.5082435.

Purwanti, I.F., Tangahu, B.V., Titah, H.S. and Kurniawan, S.B., 2019. Phytotoxicity of Aluminium contaminated soil to scirpus grossus and typha angustifolia. Ecology, Environment and Conservation, 25(2), pp.523–526.

Qayyum, S., Meng, K., Pervez, S., Nawaz, F. and Peng, C., 2019. Optimization of pH, temperature and Carbon source for bioleaching of heavy metals by Aspergillus flavus isolated from contaminated soil. Main Group Metal Chemistry, 42(1), pp.1–7. https://doi.org/10.1515/mgmc-2018-0038.

Qu, M., Chen, J., Huang, Q., Chen, J., Xu, Y., Luo, J., Wang, K., Gao, W. and Zheng, Y., 2018. Bioremediation of hexavalent chromium contaminated soil by a bioleaching system with weak magnetic fields. International Biodeterioration & Biodegradation, 128, pp.41–47. https://doi.org/10.1016/j.ibiod.2016.08.022.

Rahim, F., Abdullah, S.R.S., Hasan, H.A., Kurniawan, S.B., Mamat, A., Yusof, K.A. and Ambak, K.I., 2022. A feasibility study for the treatment of 1,2-dichloroethane-contaminated groundwater using reedbed system and assessment of its natural attenuation. Science of the Total Environment, 814, p.152799. https://doi.org/10.1016/j.scitotenv.2021.152799.

Ramadan, B.S., Rachman, I., Ikhlas, N., Kurniawan, S.B., Miftahadi, M.F. and Matsumoto, T., 2022. A comprehensive review of domestic-open waste burning: recent trends, methodology comparison, and factors assessment. Journal of Material Cycles and Waste Management, 24(5), pp.1633–1647. https://doi.org/10.1007/s10163-022-01430-9.

Ramli, N.N., Kurniawan, S.B., Ighalo, J.O., Mohd Said, N.S., Marsidi, N., Buhari, J., Ramli Shah, R.A., Zulkifli, M., Alias, J., Daud, N.M., Ahmad, J., Othman, A.R., Sheikh Abdullah, S.R. and Abu Hasan, H., 2023a. A review of the treatment technologies for hexavalent chromium contaminated water. BioMetals, 36(6), pp.1189–1219. https://doi.org/10.1007/s10534-023-00512-x.

Ramli, N.N., Othman, A.R., Kurniawan, S.B., Abdullah, S.R.S. and Hasan, H.A., 2023b. Metabolic pathway of Cr(VI) reduction by bacteria: A review. Microbiological Research, 268, p.127288. https://doi.org/10.1016/j.micres.2022.127288.

Reboredo, F.H., Pelica, J., Lidon, F.C., Pessoa, M.F., Silva, M.M., Guerra, M., Leitão, R. and Ramalho, J.C., 2021. The tolerance of eucalyptus globulus to soil contamination with arsenic. Plants, 10(4). https://doi.org/10.3390/plants10040627.

Said, N.S.M., Kurniawan, S.B., Abdullah, S.R.S., Hasan, H.A., Othman, A.R. and Ismail, N.I., 2021. Competence of Lepironia articulata in eradicating chemical oxygen demand and ammoniacal nitrogen in coffee processing mill effluent and its potential as green straw. Science of the Total Environment, 799, p.149315. https://doi.org/10.1016/j.scitotenv.2021.149315.

Salido, A.L., Hasty, K.L., Lim, J.M. and Butcher, D.J., 2003. Phytoremediation of Arsenic and Lead in contaminated soil using Chinese brake ferns ( Pteris vittata ) and Indian Mustard ( Brassica juncea). International Journal of Phytoremediation, 5(2), pp.89–103. https://doi.org/10.1080/713610173.

Sandhi, A., Landberg, T. and Greger, M., 2018. Effect of pH, temperature, and oxygenation on arsenic phytofiltration by aquatic moss (Warnstorfia fluitans). Journal of Environmental Chemical Engineering, 6(4), pp.3918–3925. https://doi.org/10.1016/j.jece.2018.05.044.

Sarkodie, E.K., Jiang, L., Li, K., Yang, J., Guo, Z., Shi, J., Deng, Y., Liu, H., Jiang, H., Liang, Y., Yin, H. and Liu, X., 2022. A review on the bioleaching of toxic metal(loid)s from contaminated soil: Insight into the mechanism of action and the role of influencing factors. Frontiers in Microbiology, 13. https://doi.org/10.3389/fmicb.2022.1049277.

Shojaei, S., Jafarpour, A., Shojaei, S., Gyasi-Agyei, Y. and Rodrigo-Comino, J., 2021. Heavy metal uptake by plants from wastewater of different pulp concentrations and contaminated soils. Journal of Cleaner Production, 296, p.126345. https://doi.org/10.1016/j.jclepro.2021.126345.

Sohaimi, K.S.A., Jaafar, J., Othman, M.H.D., Rahman, M.A., Aziz, F., Kurniawan, S.B., Abdullah, F. and Shakhih, M.F.M., 2024. A novel approach of photo-charging and dark-discharging mechanisms by using V2O5 / g-C3N4 photocatalysts for ciprofloxacin degradation. Applied Catalysis B: Environment and Energy, 357, p.124233. https://doi.org/10.1016/j.apcatb.2024.124233.

Sut-Lohmann, M., Grimm, M., Kästner, F., Raab, T., Heinrich, M. and Fischer, T., 2023. Brassica juncea as a Feasible Hyperaccumulator of chosen potentially toxic metals under extreme environmental conditions. International Journal of Environmental Research, 17(3), p.38. https://doi.org/10.1007/s41742-023-00528-8.

Tangahu, B.V., Ningsih, D.A., Kurniawan, S.B. and Imron, M.F., 2019. Study of BOD and COD removal in batik wastewater using Scirpus grossus and Iris pseudacorus with intermittent exposure system. Journal of Ecological Engineering, 20(5), pp.130–134. https://doi.org/10.12911/22998993/105357.

Tangahu, B.V., Sheikh Abdullah, S.R., Basri, H., Idris, M., Anuar, N. and Mukhlisin, M., 2011. A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011, pp.1–31. https://doi.org/10.1155/2011/939161.

Titah, H.S., Abdullah, S.R.S., Idris, M., Anuar, N., Basri, H., Mukhlisin, M., Tangahu, B.V., Purwanti, I.F. and Kurniawan, S.B., 2018. Arsenic resistance and biosorption by isolated rhizobacteria from the roots of Ludwigia octovalvis. International Journal of Microbiology, 2018(1), pp.1–10. https://doi.org/10.1155/2018/3101498.

Titah, H.S., Purwanti, I.F., Tangahu, B.V., Kurniawan, S.B., Imron, M.F., Abdullah, S.R.S. and Ismail, N. ‘Izzati, 2019. Kinetics of Aluminium removal by locally isolated Brochothrix thermosphacta and Vibrio alginolyticus. Journal of Environmental Management, 238, pp.194–200. https://doi.org/10.1016/j.jenvman.2019.03.011.

Tran, T.M., Han, H.J., Ko, J.I. and Lee, J.U., 2020. Effect of indigenous microbial consortium on bioleaching of arsenic from contaminated soil by Shewanella putrefaciens. Sustainability, 12(8), p.3286. https://doi.org/10.3390/su12083286.

Valdés, J., Pedroso, I., Quatrini, R., Dodson, R.J., Tettelin, H., Blake, R., Eisen, J.A. and Holmes, D.S., 2008. Acidithiobacillus ferrooxidans metabolism: from genome sequence to industrial applications. BMC Genomics, 9(1), p.597. https://doi.org/10.1186/1471-2164-9-597.

Wan Jusoh, H.H., Juahir, H., Mohd Nasir, N., Kurniawan, S.B., Jusoh, A. and Mahiddin, N.A., 2023. Granular activated carbon optimization for enhanced environmental disaster resilience and malathion removal from agricultural effluent. E3S Web of Conferences, 437, p.03006. https://doi.org/10.1051/e3sconf/202343703006.

Were, F.H., Wafula, G.A. and Wairungu, S., 2017. Phytoremediation using bamboo to reduce the risk of chromium exposure from a contaminated tannery site in Kenya. Journal of Health and Pollution, 7(16), pp.12-25. https://doi.org/10.5696/2156-9614-7.16.12.

Wibowo, Y.G., Imron, M.F., Kurniawan, S.B., Ramadan, B.S., Taher, T., Sudibya, A.H., Syarifuddin, H., Khairurrijal, K. and Jarwinda, 2023. Emerging strategies for mitigating acid mine drainage formation and environmental impacts: A comprehensive review of recent advances. Science and Technology Indonesia, 8(4), pp.516–541. https://doi.org/10.26554/sti.2023.8.4.516-541.

Wiradana, P.A., Gde, I.M., Sandhika, S., Sudaryatma, P.E., Widhiantara, I.G., Nyandra, M., Oktariani, A.F. and Kurniawan, S.B., 2024. Occurrence and consumer health risk assessment of heavy metals in frozen demersal fish and cephalopod products from Benoa port, Bali province. Journal of Environmental Health, 16(1). pp.41–50. https://doi.org/10.20473/jkl.v16i1.2024.41-50.

Xinhui, D., Runhua, C., Yan, S. and Shengnan, Z., 2019. Preliminary bioleaching of heavy metals from contaminated soil applying Aspergillus niger F2. American Journal of Environmental Science and Engineering, 2(4).

Yang, Z., Zhang, Z., Chai, L., Wang, Y., Liu, Y. and Xiao, R., 2016. Bioleaching remediation of heavy metal-contaminated soils using Burkholderia sp. Z-90. Journal of Hazardous Materials, 301, pp.145–152. https://doi.org/10.1016/j.jhazmat.2015.08.047.

Yuliasni, R., Kurniawan, S.B., Marlena, B., Hidayat, M.R., Kadier, A., Ma, P.C. and Imron, M.F., 2023. Recent Progress of Phytoremediation-Based Technologies for Industrial Wastewater Treatment. Journal of Ecological Engineering, 24(2), pp.208–220. https://doi.org/10.12911/22998993/156621.

Zahoor, M., Irshad, M., Rahman, H., Qasim, M., Afridi, S.G., Qadir, M. and Hussain, A., 2017. Alleviation of heavy metal toxicity and phytostimulation of Brassica campestris L. by endophytic Mucor sp. MHR-7. Ecotoxicology and Environmental Safety, 142, pp.139-149. https://doi.org/10.1016/j.ecoenv.2017.04.005.

Zeng, X., Twardowska, I., Wei, S., Sun, L., Wang, J., Zhu, J. and Cai, J., 2015. Removal of trace metals and improvement of dredged sediment dewaterability by bioleaching combined with Fenton-like reaction. Journal of Hazardous Materials, 288, pp.51–59. https://doi.org/10.1016/j.jhazmat.2015.02.017.

Zhang, T., Xu, W., Kang, P., Guo, X., Li, H., Wang, Y. and Wan, J., 2022. Performance of partial nitrification process in a zeolite biological aerated filter with the addition of sulfamethoxazole. Process Biochemistry, 116, pp.214–222. https://doi.org/10.1016/j.procbio.2022.02.026.

Zhao, F., Han, Y., Shi, H., Wang, G., Zhou, M. and Chen, Y., 2023. Arsenic in the hyperaccumulator Pteris vittata: A review of benefits, toxicity, and metabolism. Science of The Total Environment, 896, p.165232. https://doi.org/10.1016/j.scitotenv.2023.165232.

Similar Articles

You may also start an advanced similarity search for this article.